Météorologie (en cours)

Discussion dans 'Bibliothèque Wladbladi' créé par titegazelle, 6 Avril 2013.

  1. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113



    Météorologie


    Ne doit pas être confondu avec
    Métrologie.


    La météorologie a pour objet l'étude des phénomènes
    atmosphériques tels que les nuages, les précipitations ou le vent dans le but de comprendre comment ils se forment et évoluent en fonction des paramètres mesurés tels que la pression, la température et l'humidité. Le mot vient du grec antique où meteor désigne les particules en suspension dans l'atmosphère et logos veut dire discours ou connaissance.
    C'est une discipline qui traite principalement de la mécanique des fluides et de la thermodynamique mais qui fait usage de différentes autres branches de la physique, de la chimie et des mathématiques. Purement descriptive à l'origine, la météorologie est devenue un lieu d'application de ces disciplines. Pour ce faire elle doit s'appuyer sur un réseau cohérent d'observations : Le premier du genre -qui concerne un territoire multinational étendu- apparaît en 1854, sous la direction du français Le Verrier qui établit un réseau européen de données atmosphériques et fonctionne de manière opérationnelle dès 1856.


    La météorologie moderne permet d'établir des prévisions de l'évolution du temps en s'appuyant sur des modèles mathématiques à court comme à long terme. La météorologie a des applications dans des domaines très divers comme les besoins militaires, la production d'énergie, les transports (aériens, maritimes et terrestres), l'agriculture, la médecine, la construction, la photographie aérienne ou le cinéma. Elle est également appliquée pour la prévision de la qualité de l'air.

    Historique

    Antiquité

    Pour toutes les civilisations agricoles ou pastorales le temps qu'il a fait, qu'il fait ou qu'il fera a toujours été une préoccupation importante. Dans l'Antiquité chinoise, le premier ouvrage concernant la météorologie est le Nei Jing Su Wen (fin du I[SUP]er[/SUP] millénaire av. J.-C.), comprenant des observations et même des prévisions. En Inde, les périodes de mousson mènent aux premières mesures de quantité de précipitations tombées ainsi qu'à des prévisions vers 400 av. J.-C..

    À la même époque, soit en 350 av. J.-C., le terme météorologie est créé par le philosophe grec Aristote pour décrire ce qu'on appellerait les Sciences de la Terre de façon générale et non le domaine exclusif de l'étude de l'atmosphère. En particulier, il décrit le cycle hydrique ainsi :
    Maintenant le soleil, se déplaçant comme il le fait, met en branle un processus de changement, de devenir et de déclin qui par son action élève la plus fine et douce eau chaque jour, la dissout en vapeur et la transporte vers les hauteurs où elle se condense à nouveau par le froid et retourne ensuite à la terre.

    Un autre philosophe Théophraste publie en 300 av. J.-C. «Les signes du temps», premier ouvrage de prévisions météorologiques en Europe.

    L'astrométéorologie de la Grèce antique (les hydrométéores sont placés comme les astres dans monde supralunaire) fait correspondre à chaque météore un état ou un système biologique du corps humain. Cette conception mythologique est réfutée par Anaximandre qui est le premier à expliquer les phénomènes météorologiques par l'intervention des éléments et non par des causes divines.

    Shen Kuo (1031-1095) un lettré ayant vécu durant la dynastie des Song, en Chine, a travaillé entre autres choses en météorologie. Il a écrit plusieurs descriptions de tornades et a donné raison à une théorie de Sun Sikong, expliquant que les arcs-en-ciel qui sont formés par l'ombre du Soleil sous la pluie, se produisent lorsque le Soleil brille sur lui. Shen estima que, bien que les arbres fussent de plus en plus rares en raison de la déforestation pour les besoins de l'industrie du fer locale, «le pétrole était produit continuellement au sein de la Terre».


    Moyen Âge


    Le début du Moyen Âge, qui commence après la disparition de l'Empire romain par une période de mutation et de réorganisation, abandonne ou perd en grande partie les savoirs gréco-romains sur le climat. Il laisse la place à de multiples traditions orales, dont les savoirs recomposés peuvent sembler incohérents face à l'ancienne harmonie du savoir codifié dans les écrits antiques. La religion chrétienne érigeant Jésus en maître des temps et des climats prend une grande importance en Europe et parfois les dogmes des clercs laissent peu de place aux libres penseurs. Le monde arabo-musulman assimile avec plus de perspicacité l'héritage gréco-romain (cet héritage se rediffuse en Europe lors de la Renaissance du XIIe siècle) et perpétue, voire développe, des savoirs cohérents jusqu'au XIV[SUP]e[/SUP] siècle.

    L’arc-en-ciel qui est un photo-météore, fut ainsi correctement appréhendé en premier lieu, par le savant arabe Ibn Al Hayathem ou Alhazen dès le X[SUP]e[/SUP] siècle. Pionnier de l'optique moderne, il explique aussi les phénomènes de réfraction atmosphérique et comprend pourquoi la Lune et le Soleil apparaissent agrandis à l'horizon. Plus tard Theodoric de Freiberg au XIV[SUP]e[/SUP] siècle, a approfondi l'explication de la formation des arcs-en-ciel.


    Renaissance et Temps classique ou baroque


    La période de la Renaissance qui l'a suivie a permis une redécouverte des savoirs antiques, en particulier l'astronomie et l'architecture. Mais aussi avec le désenclavement du monde planétaire, elle a ouvert à la naissance de sciences fertiles qui s'imposent au XVII[SUP]e[/SUP] siècle avec leurs lots de découvertes corrélés à des développements techniques. Les lignes maritimes commerciales prenant le relais des premiers voyages de découverte ont pris de l'essor et avec eux les besoins en météorologie.

    En 1607, Galilée construit un thermoscope, l'ancêtre du thermomètre, bien que la paternité de cette invention soit contestée. Cet instrument change la pensée du temps car il permet de prendre la mesure de ce qu'on pensait un des éléments immuables d'Aristote (feu, eau, air et chaleur). On commence donc à noter les variations du temps de façon limitée. Il faudra attendre la création d'un standard de température par Daniel Gabriel Fahrenheit et Anders Celsius au XVIII[SUP]e[/SUP] siècle pour quantifier vraiment les choses.

    En 1644, Evangelista Torricelli, un contemporain de Galilée, créa le premier vide artificiel et utilisa le concept pour créer le premier baromètre. Le tube de Torricelli est un tube de verre qu'on a plongé dans le mercure pour enlever l'air puis qu'on redresse sans le sortir complètement du liquide. Par son poids, le mercure redescend et laisse un vide dans la tête du tube mais la différence de pression entre l'atmosphère, qui presse sur le liquide autour du tube, et le vide dans celui-ci empêche le mercure de sortir complètement du tube. La hauteur restante dans le tube indique la pression atmosphérique.
    Torricelli découvrit avec son invention que la pression de l'atmosphère varie dans le temps. En 1648, Blaise Pascal découvre que la pression diminue également avec l'altitude et en déduit qu'il y a un vide au-delà de l'atmosphère.


    Les précurseurs (XVII[SUP]e[/SUP] au XIX[SUP]e[/SUP] siècle)


    En 1667, le scientifique britannique Robert Hooke construit l'anémomètre pour mesurer la vitesse du vent, un instrument essentiel à la navigation. En 1686, Edmund Halley cartographie les alizés et en déduit que les changements atmosphériques sont causés par le réchauffement solaire. Il confirme ainsi les découvertes de Pascal sur la pression atmosphérique.


    En 1735, George Hadley est le premier à prendre en compte la rotation de la Terre pour expliquer les alizés. Bien que son explication ait été incorrecte, prédisant les vents de moitié moins forts que la réalité, son nom a été donné à la circulation dans les tropiques comme cellules de Hadley.

    Benjamin Franklin observe quotidiennement le temps qu'il fait de 1743 à 1784. Il remarque que les systèmes météorologiques vont d'ouest en est en Amérique du Nord. Il publie la première carte scientifique du Gulf Stream, prouve que la foudre est un phénomène électrique, relie les éruptions volcaniques et le comportement de la météo et spécule sur les effets de la déforestation sur le climat.

    En 1780, Horace-Bénédict de Saussure construit un hygromètre à cheveu pour mesurer l'humidité de l'air. Il s'agit d'un instrument complémentaire au thermomètre et à l'anémomètre pour quantifier les variables atmosphériques.

    En 1802-1803, le britannique Luke Howard écrit On the Modification of Clouds dans lequel il donne les noms que nous connaissons maintenant aux nuages à partir du latin. En 1806, Francis Beaufort introduit son échelle descriptive des vents destinée aux marins. L'échelle de Beaufort relie les effets du vent sur les vagues (mer étale jusqu'aux vagues déferlantes avec écume) à sa force en nœuds.

    En 1835, dans un article Sur les équations du mouvement relatif des systèmes de corps, Gaspard-Gustave Coriolis décrit mathématiquement la force qui porte son nom : la force de Coriolis. Celle-ci apparaît comme une composante supplémentaire à la force centrifuge, ressentie par un corps en mouvement relativement à un référentiel en rotation, comme cela pourrait se produire par exemple dans les rouages d'une machine. Cette force est essentielle dans la description du mouvement des systèmes météorologiques comme Hadley l'avait pressenti un siècle auparavant.

    En 1838, William Reidpublie sa controversée Law of Storms décrivant le comportement des dépressions. Son ouvrage divise la communauté scientifique durant dix années. En 1841, l'américain Elias Loomis est le premier à suggérer la présence de fronts pour expliquer la météo mais ce n'est qu'après la Première Guerre mondiale que l'école norvégienne de météorologie développera ce concept.

    Les premiers réseaux météorologiques


    En 1654, sous les conseils du jésuite Luigi Antinori, Ferdinand II de Médicis inaugure le premier réseau météorologique mondial coordonné par la Société météorologique de Florence (stations à Florence, Bologne, Parme, Milan, Innsbruck, Osnabrück, Paris et Varsovie qui utilisent de manière harmonisée le thermomètre florentin, premier thermomètre à alcool développé par les physiciens de l'Accademia del Cimento).

    En 1849, le Smithsonian Institution, sous la direction du physicien Joseph Henry commence à mettre sur pied un réseau de stations météorologiques d'observation aux États-Unis. Les observations seront disséminées rapidement grâce à l'invention en 1837 par Samuel Morse du télégraphe. Joseph Henry est à Washington D.C. le premier à exposer une carte de prévision météorologique des bassins de l'Ohio aux rivages de la côte atlantique : elle représente les formations nuageuses des contrées continentales qui sont déplacées par les vents d'ouest dominants. Le temps de l'Ohio permet de supposer par translation de ses masses nuageuses en une journée le temps prévisible sur la Virginie, le Maryland ou New-York.

    Le 14 novembre 1854, une violente tempête provoque le naufrage de 41 navires français en mer Noire, au cours de la guerre de Crimée. Cette tempête avait traversé toute l'Europe de l'Ouest, mais personne ne fut en mesure de signaler, voire prévenir du danger. Face à ce constat, Urbain Le Verrier, directeur de l'observatoire de Paris, décide de mettre en place un vaste réseau de stations météorologiques couvrant l'ensemble de l'Europe et mettant à profit l'innovation technologique que représente le récent télégraphe électrique. Ce réseau regroupe au départ 24 stations dont 13 reliées par télégraphe, puis en 1865 s'étend à 59 observatoires répartis sur l'ensemble de l'Europe.

    En 1860, le vice-amiral Robert FitzRoy utilise le télégraphe pour colliger les données météorologiques quotidiennes venant de toute l'Angleterre et tracer les premières cartes synoptiques. La variation de ces cartes dans le temps lui permet d'établir les premières prévisions qu'il publie dans le journal The Times à partir de 1860. Il développe également un système d'alerte dans les ports anglais (sous forme de cônes hissés pour prévenir de l'arrivée de tempêtes).

    Tous les réseaux d'observations mentionnés jusqu'à présent étaient indépendants. Une information météorologique cruciale pouvait donc ne pas être transmise. Ceci était particulièrement important en mer. Le principal promoteur d'échanges internationaux sera l'américain Matthew Fontaine Maury. En 1853, une première conférence des représentants de dix pays se réunit à Bruxelles pour formaliser une entente et normaliser le codage des données météorologiques. En 1873, l'Organisation météorologique internationale est fondée à Vienne par les pays ayant un service météorologique.
    Le norvégien Nansen met en évidence le rôle majeur des mers et océans dans l'explication climatique.

    Ère contemporaine et la création de l'OMM


    Frontologie
    En 1902, après plus de 200 lâchers de ballons, souvent effectués de nuit pour éviter l'effet de radiation du soleil, Léon Teisserenc de Bort découvrit la tropopause. Il en conclut que l'atmosphère terrestre se composait de deux couches, qu'il baptisa troposphère et stratosphère, une convention qui est toujours valable à ce jour. Richard Aßmann est considéré également comme co-découvreur de la stratosphère car il publia indépendamment la même année ses résultats sur le sujet.
    En 1919, les météorologistes norvégiens, sous la direction de Vilhelm Bjerknes, développent l'idée des masses d'air se rencontrant le long de zones de discontinuité qu'on nomma les fronts (front chaud, front froid et occlusion). Selon cette théorie, il y a trois zones frontales entre les quatre masses d'air :

    • Arctique
    • Maritime
    • Polaire
    • Tropicale
    En alliant la force de Coriolis, ces notions et la force de pression, ils expliquèrent la génération, l'intensification et le déclin des systèmes météorologiques des latitudes moyennes. Le groupe comprenait Carl-Gustaf Rossby qui fut le premier à expliquer la circulation atmosphérique à grande échelle en termes de mécanique des fluides, Tor Bergeron qui détermina le mécanisme de formation de la pluie et Jacob Bjerknes. Cette école de pensée se répandit mondialement. Encore aujourd'hui, les explications météorologiques simplifiées que l'on voit dans les médias utilisent le vocabulaire de l'école norvégienne.

    Modélisation
    Durant la Seconde Guerre mondiale, la météorologie devint un instrument essentiel de l'effort de guerre et put bénéficier d'un soutien jamais vu jusqu'à ce moment. Des écoles furent mises sur pied pour former des techniciens et des météorologues en grand nombre car elle joua un rôle de premier plan pour le routage des navires et des convois de ravitaillement, le déploiement de l'aviation et la planification des opérations militaires. La guerre météorologique de l'Atlantique nord, entre autres, vit les Alliés (la Grande-Bretagne en particulier) et l'Allemagne être en compétition pour l'accès à des données météorologiques fiables dans l'Atlantique Nord et l'Arctique.

    La météorologie étant reliée à la mécanique des fluides (voir section science météorologique), dès 1922 Lewis Fry Richardson publia Weather prediction by numerical process qui décrivait comment les termes mineurs des équations de mouvement de l'air pouvaient être négligés pour résoudre plus facilement les conditions futures de l'atmosphère. Cependant ce ne sera qu'avec la venue des ordinateurs, suite au second conflit mondial, que son idée sera vraiment mise en pratique à partir des années 1950. C'était le début de la prévision numérique du temps, une formulation sous forme de programmes informatiques de plus en plus complets permettant de résoudre les équations météorologiques.

    La théorie du chaos va être appliquée à l'atmosphère par Edward Lorenz au cours des années 1960. Ce concept va être développé plus tard (à partir des années 1990) dans les modèles de prévision d'ensembles qui utilisent des perturbations des données initiales pour estimer la variabilité des résultats.

    Nouveaux instruments
    Le radar météorologique est développé à partir des études faites durant la guerre sur les échos de bruit causés par les précipitations :

    • Aux États-Unis : développement des premiers radars météorologiques opérationnels grâce à plusieurs chercheurs, dont entre autres David Atlas.
    • Au Canada : J. Stewart Marshall et R.H. Douglas forment le «Stormy Weather Groupà l’Université McGill de Montréal qui travailla sur la relation entre la réflectivité (Z), le retour d’intensité de la précipitation, et le taux de précipitation (R).
    • En Grande-Bretagne, les recherches portent sur les caractéristiques des patrons des précipitations et sur les possibilités qu’offrent les différentes longueurs d'onde entre 1 et 10 centimètres.
    En 1960, TIROS-1 est le premier satellite météorologique lancé avec succès. Celui-ci marque le début de la collecte de données météorologiques depuis l'espace à une résolution de beaucoup supérieure aux stations terrestres. De plus il permet de sonder des endroits peu ou pas couverts comme les océans, les déserts et les Pôles.

    Organisation
    En 1951 l'Organisation météorologique mondiale (OMM) est fondée par l'ONU en remplacement de l'Organisation météorologique internationale.

    Ensuite


    Le développement des ordinateurs plus puissants dans les années 1970 et des superordinateurs dans les années 1980 mène à une meilleure résolution des modèles numériques. Les recherches sur l'atmosphère, les océans et leurs inter-relations, de phénomènes tels El Nino et les cyclones tropicaux améliorent les connaissances des phénomènes météorologiques et il s'ensuit une meilleure paramétrisation des équations.

    Les instruments de collecte de données ont grandement évolué depuis 1960 : automatisation de cette collecte et amélioration des radars et des satellites météorologiques ainsi que de leur résolution amenant des sondages directs de l'atmosphère. Le développement des communications (veille météorologique mondiale) a permis de répandre mondialement les prévisions ainsi que les alertes météorologiques.

    Plus récemment, l'étude des tendances de températures et de la concentration de CO[SUB]2[/SUB] a pris de l'essor. À partir de la fin XX[SUP]e[/SUP] siècle, la majorité des scientifiques ont reconnu le signal d'un réchauffement climatique depuis le début de l'ère industrielle. Au début du XXI[SUP]e[/SUP] siècle, un rapport d'experts internationaux a reconnu l'action humaine comme étant le plus probable responsable et a prédit une poursuite de celui-ci.


    ..........
     
  2. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Météorologie
    _______________________________________________



    Science météorologique

    Le but de la météorologie est de trouver les lois régissant la dynamique du fluide que l'on nomme l'air et de pouvoir prédire son comportement futur. L'air est un fluide compressible, formé de différents gaz et se trouvant dans une mince couche à la surface d'un référentiel en rotation (la Terre). La météorologie étant une branche de la physique, la théorie des fluides, le calcul des forces et la thermodynamique sont mises à profit pour expliquer le comportement de l'atmosphère.

    Comportement à grande échelle

    En premier lieu, pour expliquer le mouvement de l'air à l'échelle planétaire, dite synoptique, on se heurte à sept inconnues :

    • Pression (P)
    • Température (T)
    • Densité de l'air ([​IMG])
    • Contenu en eau (q)
    • Trois dimensions x, y et z
    Il faut donc sept équations :

    [​IMG] où g est la constante de gravité ;

    • l'équation de continuité de masse relie la variation de la masse dans un volume d'air et sa forme dans le temps (équations de Navier-Stokes) ;
    • l'équation de composition relie le contenu en eau de l'air et sa variation dans l'espace.
    Les équations de bilan de l'énergie de la thermodynamique tiennent compte des changements de phase d'une des composantes importantes de l'atmosphère : l'eau.
    Résoudre ces équations n'est pas facile car elles comportent de nombreux termes qui n'agissent pas tous à la même échelle. Par exemple, dans les équations de quantité de mouvement, les équations calculent le mouvement de l'air par la différence entre le gradient de pression et la force de Coriolis. Comme les forces en cause sont presque égales, la différence sera de quelques ordres de grandeur plus petite. Une erreur de calcul donne donc de grandes différences dans le résultat.

    De plus, l'atmosphère est un système où les variables changent de valeur en chaque point. Il n'est pas possible de la sonder avec une résolution qui nous permettrait de parfaitement définir son état initial. C'est pourquoi, les premiers météorologues ont d'abord développé des modèles conceptuels empiriques pour expliquer le comportement de l'atmosphère. Les fronts, creux barométriques et autres termes si bien connus dans le vocabulaire des présentateurs météo proviennent de ces premières explications du temps. Elles ont été rendues possibles par le développement des moyens de sondage de l'atmosphère par l'aérologie.

    Par la suite, les théories de la dynamique de l'atmosphère et les données obtenus par les radiosondages ont permis de développer des modèles mathématiques en utilisant seulement les termes les plus importants dans les équations et en simplifiant la structure de l'atmosphère. Avec l'avènement de l'informatique, les termes négligés ont pu être graduellement incorporés bien qu'on ne soit pas encore parvenus à les incorporer tous (voir Prévision numérique du temps).

    Toutefois, la météorologie est encore handicapée par la très faible densité de données disponibles. Les stations de sondage sont éloignées de plusieurs centaines de kilomètres les unes des autres et même si des capteurs à distance tels les satellites et les radars augmentent la définition de l'analyse, toutes ces informations comportent des imprécisions assez grandes. C'est pourquoi, la prévision du temps est encore un mélange entre les calculs venant des équations et l'expérience du météorologiste.

    Comportement à petite échelle

    Les équations vues précédemment comportent certaines hypothèses qui prennent pour acquis que les mouvements de l'air et la condensation se produisent assez lentement pour que la pression, la température et le contenu en eau s'adaptent graduellement. Cependant, lorsque l'on descend à des échelles plus petites, de l'ordre de quelques mètres à quelques kilomètres, et lorsque les mouvements sont rapides, certaines de ces équations ne sont que des approximations.

    Par exemple, l'équation de l'équilibre hydrostatique n'est pas respectée dans les orages où l'eau contenue dans les volumes d'air en ascendance, condense plus lentement qu'on pourrait le penser. En effet, les variations de pression et de température se produisent non linéairement dans ce cas. Le rôle de plusieurs chercheurs en météorologie est donc d'enquêter sur les phénomènes à petite échelle comme les orages, les tornades et même sur des systèmes à plus large échelle, comme les cyclones tropicaux, qui comportent des items à fine échelle.

    Couche limite

    Les échanges de chaleur, d'humidité et de particules se produisent en plus grand partie dans la mince couche d'air juste au-dessus de la surface terrestre. Nous parlons ici de l'interaction océan-atmosphère, soulèvement orographique, convergence par le relief, zone urbaine versus rurale, etc. Le frottement est partout présent mais très variable dans cette couche et il cause de la turbulence ce qui rend très complexes ces échanges. Ceci donne lieu à une paramétrisation de ceux-ci dans le calcul des équations. L'étude de la couche limite est donc un des domaines importants de la recherche en météorologie.

    Échelle planétaire

    Les échelles précédentes étaient toutes reliés au comportement des systèmes météorologiques de quelques minutes à quelques jours. Il existe cependant des cycles qui durent des mois ou même des années. Ces comportements planétaires sont également régis par les équations primitives atmosphériques sous la forme de développement d'onde, comme les Ondes de Rossby, qui vont se propager dans l'atmosphère et donner des oscillations de résonance. L'étude de l'échelle planétaire est également reliée aux échanges de chaleur et d'humidité entre les Tropiques et les régions polaires.

    Un exemple connu de cette échelle est le phénomène El Niño, une anomalie de température de la surface de la mer dans le Pacifique sud qui est relié à un changement des alizés dans cette région et qui revient à des intervalles variables. Moins connus sont l’Oscillation de Madden-Julian, l’Oscillation nord-atlantique et d'autres, qui influencent la trajectoire des dépressions des latitudes moyennes. Cette échelle tend vers celle de la climatologie.

    Spécialités

    Instrumentation

    La météorologie dépend de la collecte de la valeur des variables de l'atmosphère mentionnées précédemment. Les instruments comme le thermomètre et l'anémomètre ont d'abord été utilisé individuellement, puis souvent regroupés dans des stations météorologiques terrestres et maritimes. Ces données ont été d'abord très éparses et prises par des amateurs. Le développement des communications et des transports a forcé les gouvernements de tous les pays à mettre sur pied au sein de leurs services météorologiques des réseaux d'observation et à développer de nouveaux instruments. Dans ces réseaux nationaux les instruments et leur implantation obéissent à des normes sévères, afin de biaiser le moins possible l'initialisation des modèles.

    Le développement des ballons à la fin du XIX[SUP]e[/SUP] siècle, puis des avions et des fusées aux XX[SUP]e[/SUP] siècle a permis de collecter des données en altitude. Finalement, les radars et satellites ont permis depuis la seconde moitié de ce siècle de compléter la couverture à l'ensemble du globe. La recherche continue d'améliorer les instruments et d'en développer de nouveaux.

    Prévision météorologique

    L’histoire de la prévision du temps remonte à des temps immémoriaux avec les oracles et devins. Elle ne fut pas toujours bien vue. Ainsi une loi anglaise de 1677 condamnait au bûcher les météorologues, taxés de sorcellerie. Cette loi ne fut abrogée qu'en 1959 mais ne fut pas toujours appliquée à la lettre. Ainsi le Group Captain James Stagg, météorologue en chef, et les membres de ses trois équipes de prévision, purent prédire une accalmie pour le débarquement de Normandie le matin du 6 juin 1944, sans crainte de subir ce sort.

    La science moderne date vraiment de la fin du XIX[SUP]e[/SUP] siècle et du début du XX[SUP]e[/SUP] siècle. La prévision météorologique est une application des connaissances en météorologie et des techniques modernes de prises de données et d’informatique pour prédire l’état de l’atmosphère à un temps ultérieur. Elle s’est cependant affirmée depuis la Deuxième Guerre mondiale avec l'entrée en jeu des moyens techniques comme le radar, les communications modernes et le développement des ordinateurs. On retrouve plusieurs domaines d'application des prévisions dont :

    [​IMG]

    Technologies de contrôle météorologique

    Il n'existe dans la littérature scientifique aucun mécanisme de modification délibérée du temps ou du climat qui démontre, théoriquement ou en pratique, une capacité pour affecter le temps à grande échelle de manière contrôlée. Seules quelques méthodes ont pu, jusqu'ici, donner des résultats localisés, dans des circonstances favorables.
    Voici quelques exemples de technologies visant à obtenir un certain contrôle sur certaines conditions atmosphériques :

    • HAARP, technologie d'étude et de modification localisée des propriétés radio-électriques de l'ionosphère ;
    • Canon anti-grêle : pour tenter de perturber la formation de grêle au moyen d'ondes de choc (anecdotique) ;
    • Ensemencement des nuages : en lâchant une fumée d'iodure d'argent dans les nuages pour augmenter le nombre de noyaux de condensation disponibles et donc la pluie. Ceci aurait dans le cas des orages pour effet d'augmenter le nombre de grêlons aux dépens de leur taille individuelle ;
    • Feux anti-brouillard pour dissiper le brouillard par un réchauffement localisé.
    Recherche
    Beaucoup reste à faire pour comprendre et paramétrer les phénomènes météorologiques. Comme mentionné antérieurement, les équations qui régissent l'atmosphère sont complexes et les données in situ difficiles à obtenir dans certains cas. Les interactions à méso et micro échelles dans un orage ou un cyclone tropical sont difficilement reproductibles en laboratoire. Les chercheurs sur des sujets comme la micrométéorologie, la microphysique des nuages et l'interaction air-mer doivent effectuer un raisonnement de physique fondamentale, puis utiliser des simulations mathématiques qu'ils comparent aux observations.


    ..........
     
  3. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Météorologie - fin -
    _______________________________________________


    Phénomènes météorologiques


    Circulation atmosphériqueArticle complet ici : #4

    La circulation atmosphérique est le mouvement à l'échelle planétaire de la couche d'air entourant la Terre qui redistribue la chaleur provenant du Soleil en conjonction avec la circulation océanique. En effet, comme la Terre est un sphéroïde ayant un axe de rotation 23,5 degrés par rapport à son plan de translation autour de notre étoile, la radiation solaire incidente au sol varie entre un maximum aux régions faisant face directement au Soleil (équateur) et un minimum à celles très inclinés par rapport à ce dernier (Pôles). La radiation réémise par le sol est liée à la quantité d'énergie reçue. Il s'ensuit un réchauffement différentiel entre les deux régions qui ne peut persister sous peine d'une augmentation sans fin de ce dernier et c'est ce qui crée la circulation atmosphérique.


    La pression à la surface et en altitude se répartit donc en zones organisées où la pression est un maximum (anticyclone), un minimum (dépression), un minimum local (creux barométrique), un maximum local (crête barométrique). Les zones où les basses températures provenant des Pôles rencontrent les chaudes températures venant de l'Équateur se nomment des fronts : Front froid, front chaud et front occlus. Certains systèmes météorologiques ont des noms particuliers : cyclones tropicaux, mousson, haboob, El Niño, blocage d'air froid, etc.

    El Niño, la Niña

    El Niño et l’oscillation australe (OA) sont les deux pôles d'un même phénomène appelé ENSO qui affecte le sud du Pacifique. Les cycles de ce dernier perturbent l’équilibre thermodynamique du couple océan (El Niño) – atmosphère (oscillation australe). Il est à l’origine d’importantes modifications de la circulation atmosphérique et océanique ayant des impacts mondiaux.


    L’opposé d’El Nino est La Niña qui amène des températures océaniques anormalement froides sur l’est du Pacifique autour de l’équateur. L’activité orageuse est renforcée sur l’ouest du bassin du Pacifique alors que les alizés gagnent en intensité. Les effets de La Nina sont à peu près opposés à ceux d'El Niño. La Niña et El Niño ne se suivent pas toujours, seulement en moyenne une fois sur trois, mais la succession rapide de conditions climatiques très différentes d’un régime à l’autre peut engendrer un important stress sur la végétation.

    Vent


    Le vent est un mouvement de l’atmosphère. Il apparaît sur toutes les planètes disposant d’une atmosphère. Ces mouvements de masses d’air sont provoqués par deux phénomènes se produisant simultanément : un réchauffement inégalement réparti de la surface de la planète par l’énergie solaire et la rotation de la planète. Une représentation des variations de force moyenne des vents selon leur orientation, et par là le repérage des vents dominants, peut être fait sur les secteurs d'une rose des vents.*


    Sur Terre, plusieurs régions ont des vents caractéristiques auxquels les populations locales ont donné des noms particuliers. Les vents sont une source d’énergie renouvelable, et ont été utilisés à travers les siècles à divers usages, par les moulins à vent, la navigation à la voile ou plus simplement le séchage. En montagne, le vol à voile utilise pour partie le vent (vol de pente) et en général (montagnes et plaines) les courants ascendants générés par l’échauffement des particules d'air. La vitesse du vent est mesurée avec un anémomètre mais peut être estimée par une manche à air, un drapeau, etc.

    Les vents peuvent être réguliers ou en rafales. On retrouve des corridors de vent très forts le long des zones de contraste de températures qu'on appelle courant-jets. Sous les orages, la transformation du cisaillement horizontal du vent en tourbillon vertical donne une tornade ou une trombe marine. Le même phénomène peut se produire sans nuage et donne un tourbillon de poussière. La descente de l'air vers le sol avec les précipitations dans un orage donne une rafale descendante. En mer, les fronts de rafales sont appelées grains. Le relief est aussi la cause de vents catabatiques ou anabatiques.

    Nuages et précipitations


    L'atmosphère terrestre est constituée principalement d’azote (près de 80 %), d'oxygène et de vapeur d'eau. Ses mouvements verticaux permettent la compression ou la dilatation de ce gaz selon la loi des gaz parfaits dans un processus habituellement adiabatique. La quantité maximale de vapeur d’eau que peut contenir l'air est fonction de la température de celui-ci. Lorsque l'air s'élève, il se dilate et sa température diminue, permettant la condensation de la vapeur d'eau, à saturation, en gouttelettes. Un nuage est alors formé.

    Un nuage est donc un ensemble de gouttelettes d’eau (ou de cristaux de glace) en suspension dans l’air. L’aspect du nuage dépend de la lumière qu’il reçoit, de la nature, de la dimension, du nombre et de la répartition des particules qui le constituent. Plus l’air est chaud, plus il peut contenir de la vapeur d’eau, et plus le nuage sera important. Plus les mouvements verticaux de l'air sont forts, plus le nuage aura une extension verticale importante.

    On distingue deux types principaux de nuages : les nuages stratiformes, qui proviennent du mouvement à grande échelle de l'atmosphère, et les nuages convectifs qui eux se forment localement quand l'air est instable. Ces deux types de nuages peuvent se retrouver à tous les niveaux de la troposphère et sont subdivisés selon la hauteur où ils se trouvent (basse, moyenne, élevée).

    Si le mouvement vertical est suffisant, les gouttelettes ou les cristaux de glace fusionneront pour donner des précipitations liquides ou solides : pluie, bruine, neige, grêle, grésil, verglas et granule de glace. Elles seront sous forme continue avec les nuages stratiformes et sous formes d'averses ou d'orages dans ceux convectifs. D'autres hydrométéores se forment au sol comme la brume et le brouillard.

    Phénomènes accessoires

    Les phénomènes météorologiques sont souvent accompagnés de ou produisent des phénomènes secondaires. Le vent soulève du sol des solides non aqueux, des lithométéores, qui restent en suspension dans l’atmosphère. La brume sèche est ainsi une suspension dans l’air de particules invisibles à l'œil nu et sèches, suffisamment nombreuses pour donner à l’air un aspect opalescent. Dans les régions sèches, la brume de sable est une suspension de poussières ou de petits grains de sable qui restent dans l’air après une tempête de vent. Le chasse-poussière ou chasse-sable est de la poussière ou du sable soulevés du sol à des hauteurs faibles ou modérées par un vent suffisamment fort et turbulent. Quand le vent augmente, on assiste à des tempêtes de sable ou de poussière qui atteignent de grandes hauteurs. Quand un vortex très local se forme dans les régions désertiques, il y a souvent des tourbillons de poussière, un genre de tornade sans nuages.


    Certains phénomènes lumineux sont dus à la réflexion, la réfraction, la diffraction ou à l'interférence de la lumière sur les particules présentes dans l’atmosphère. Ce sont des photométéores. Ainsi, le halo et les parhélies, qui peuvent apparaître autour du Soleil ou de la Lune, sont dus à la réfraction ou la réflexion de la lumière sur des cristaux de glace dans l’atmosphère. Ces phénomènes ont la forme d’anneaux, d’arcs, de colonnes ou de foyers lumineux. Autour du Soleil, les halos peuvent avoir certaines couleurs alors qu’autour de la Lune, ils paraissent toujours blancs. De même, la couronne est constituée d'un ou de plusieurs anneaux colorés observables autour du Soleil ou de la Lune lorsqu'il (elle) se trouve derrière des nuages minces comme les altocumulus. Elle est due à la diffraction de la lumière sur les particules des nuages.

    D'autres phénomènes sont dus à la diffraction de la lumière. L'irisation, généralement du bleu et/ou du vert pâle, est la présence de couleur sur les bords des nuages à cause de la diffraction de la lumière. Une gloire est formée d'anneaux colorés qui apparaissent autour de l’ombre de l’observateur sur un nuage ou le brouillard en contrebas. L'arc-en-ciel, dont les couleurs vont du violet au rouge, apparaît lorsque la lumière venant d'une éclaircie passe dans une atmosphère remplie de gouttes de pluie. Les anneaux de Bishop sont un phénomène lumineux qui apparaît sur des particules solides, après une éruption volcanique par exemple, formant des anneaux bleuâtres à l’intérieur et rouges à l’extérieur, causé par la diffraction des rayons lumineux sur ces particules.

    Le mirage est dû aux densités différentes des couches d’air que traverse le rayon lumineux. Deux cas peuvent se produire : sur un sol surchauffé un objet éloigné devient visible, mais en image inversée, comme s’il se réfléchissait sur une étendue d’eau. C’est le mirage des déserts (le même phénomène se produit sur les routes goudronnées). Sur un sol plus froid que l’air, l’image de l’objet paraît au-dessus de l’objet vu directement. De tels mirages s’observent souvent en montagne ou au-dessus de la mer. C’est ainsi que l’on peut voir des objets situés en dessous de l’horizon. Les pied-de-vents sont des rayons solaires passant entre les nuages et vus à contre-jour, rayons qu'on perçoit alors comme un faisceau lumineux dans le ciel ou comme une «douche de lumière».

    Il y a également diverses manifestations de l’électricité atmosphérique sous forme de lumières ou de bruits, appelées électrométéores. La plupart sont associés aux orages où on observe des décharges brusques d’électricité. Il s'agit de la foudre, de l'éclair et du tonnerre. Le feu de Saint-Elme est un type particulier de foudre.

    Finalement, bien que non associées à la météorologie, les aurores polaires, sont des phénomènes lumineux apparaissant dans les hautes couches de l’atmosphère en forme d’arcs, de bandes ou de rideaux. Les aurores sont fréquentes aux hautes latitudes où les particules ionisées du vent solaire sont déviées par les pôles magnétiques et viennent frapper l'atmosphère.

    Environnement

    Réchauffement climatique : Article complet ici: #10


    Le réchauffement climatique est un phénomène d'augmentation de la température moyenne des océans et de l'atmosphère, à l'échelle planétaire et sur plusieurs années. Dans son acception commune, ce terme est appliqué au changement climatique observé depuis environ 25 ans, c'est-à-dire depuis la fin du XX[SUP]e[/SUP] siècle. La plupart des scientifiques attribuent la plus grande partie de ce réchauffement aux émissions de gaz à effet de serre (GES) d'origine humaine. La probabilité que le réchauffement climatique depuis 1950 soit d'origine humaine est de plus de 90 % selon le quatrième rapport du Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) chargé d'établir un consensus scientifique sur cette question. Cette thèse n'est contestée que par une minorité de personnalités.


    Climatologie appliquée


    En tant que discipline mesurant différentes sources d'énergies ou ressources renouvelables (l’ensoleillement, le vent, les précipitations, etc.), la météorologie permet de mesurer les quantités d’énergie renouvelable et eau disponibles et de prévoir leur disponibilité dans le temps. Elle améliore le repérage des situations les plus propices aux sources alternatives d'énergie, qui peuvent contribuer à limiter le réchauffement et permet de mieux adapter l'habitat bioclimatique et les besoins en efficience énergétique à chaque contexte climatique.


    Les anglophones parlent aussi de biométéorologie, et en France des formations spécialisées dans le domaine environnemental sont diffusées, entre autres par Météo-France qui propose des modules comme «Météorologie de l'environnement», «Météorologie pour le potentiel éolien» et «Environnement».

    L'épidémiologie, et l'écoépidémiologie font aussi appel aux sciences du climat.

    Phénomènes reliés aux conditions météorologiques






    Nom de la page : Météorologie
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Météorologie de Wikipédia en français (auteurs)
    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique

    ____________________________


    *Rose des vents


    Une rose des vents est une figure indiquant les points cardinaux : nord, sud, est, ouest et les orientations intermédiaires, jusqu’à 32 directions. En fait, les roses initiales n’indiquaient pas quatre directions mais huit vents.

    Aujourd’hui, on trouve souvent des roses des vents avec l’indication W à la place de O, pour l’anglais West. Il en fut de même par le passé, où l’est pouvait être indiqué par la lettre L (pour l’italien levante, levant) et le nord par la lettre T (pour l’italien tramontana, tramontane, ou bien par une fleur-de-lys.


    Les roses des vents du Moyen Âge avaient parfois l’Est en haut, pour indiquer que Jérusalem (à l’Est du point de vue européen) était supérieure à tout.


    Histoire

    Les marins de l'Antiquité avaient déjà des connaissances astronomiques. Grâce à elle, ils n'étaient plus dépendants de la seule navigation côtière, mais pouvaient s'orienter la nuit grâce à la navigation astronomique. Pour cela il fallait connaître sa direction et une des techniques utilisées sera la rose des vents. Il est connu que les Phéniciens ont été les premiers à faire usage de la rose. Plus tard, elle a été utilisée dans la Grèce antique et améliorée par les marins italiens. La rose repose sur le principe de trouver sa route selon la direction du vent et ensuite de naviguer.

    Au départ les marins grecs ont utilisé les quatre vents correspondant aux quatre points cardinaux, mais bien vite ils durent y ajouter les quatre vents intermédiaires : Boreas (nord), Kakas (nord-est), Apeliotes (est), Euros (sud-est), Notos (sud), Lips (sud-ouest), Zephuros (ouest) et Skibos (nord-ouest). Les Italiens ont appelé ces vents comme suit : arachnidae (nord), Grecale (nord-est), Levante (est), Scirocco (sud-est), Mezzodi ou Ostro (sud), Garbino, plus tard appelé Africo ou Libeccio (sud-ouest), Ponente (ouest) et allactaga (nord-ouest).


    [​IMG]


    Rose des vents sur la Méditerranée


    [SUP]Cette rose des vents était utilisée par les marins sur la Méditerranée pour se repérer. La direction, le nom et les effets de chacun de ces vents peuvent varier suivant les régions (en particulier, les directions du Mistral et de la Tramontane sont permutées dans la région du Languedoc).

    [/SUP]

    Description : Rose des vents, version espagnole et française
    Date : 25 July 2008
    Source : Compass_rose_simple.svg

    Auteur : derivative work: Xavigivax (d)
    Autres versions : Cette image vectorielle contient des éléments, éventuellement modifiés,
    qui ont été extraits de : Compassrose_simple.svg
    Ce fichier est disponible selon les termes de la licence
    Creative Commons paternité – partage à l’identique 3.0 (non transposée)


    ___________________​



    Au Moyen Âge, la rose des vents italienne sera adoptée par les marins de la Méditerranée. Sur beaucoup de portulans de l'époque apparaîtra une rose des vents avec les initiales italiennes T, G, L, S, O, L, P et M.


    D'autres peuples à tradition maritime possèdent également des noms spécifiques pour les directions intermédiaires telles que le nord-est. Ainsi en breton, les huit directions s'appellent (à partir du nord, dans le sens des aiguilles d'une montre) : norzh (ou : sterenn), biz, reter, gevred, su, mervent, kornaoueg, gwalarn.


    Il n'y a pas de norme absolue pour l'élaboration d'une rose des vents et ainsi chaque école de cartographes semble avoir développé sa propre norme. Sur les premières cartes le nord est indiqué par un fer de lance au-dessus de la lettre T (pour Tramontana). Ce symbole est devenu une fleur de lys, à l'époque de Christophe Colomb et a été vu sur les cartes portugaises. Toujours au XIV[SUP]e[/SUP] siècle, le L (pour Levante) sur le côté Est de la rose a été remplacé par une croix de Malte, indiquant Bethléem, c'est-à-dire l'endroit où le Christ est né.




    Nom de la page : Rose des vents
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Rose des vents de Wikipédia en français (auteurs)

    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique
    __________________________________________

    FIN pour l'article "Météorologie




     
    Dernière édition: 18 Janvier 2016
  4. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Mirage

    Le mirage (du latin miror, mirari : s'étonner, voir avec étonnement) est un phénomène optique dû à la déviation des faisceaux lumineux par des superpositions de couches d'air de températures différentes. La déviation de ces rayons donne alors l'impression que l'objet que l'on regarde est à un endroit autre que son réel emplacement, et peut déformer l'image observée. Ce n'est en rien une illusion d'optique qui est une déformation d'une image due à une interprétation erronée du cerveau. Un mirage n'est pas non plus une hallucination puisqu'il est possible de les photographier (l'image est donc réelle). Les images produites par un mirage sont par contre sujettes à interprétation : par exemple les mirages inférieurs ont souvent l'apparence d'étendues d'eau, les Fata Morgana peuvent ressembler à des châteaux, des plateaux, des montagnes ou des constructions plus complexes.
    Il est possible de classer les mirages en 3 catégories : les mirages supérieurs, inférieurs et les Fata Morgana, mirages plus complexes composés de plusieurs images superposées l'une à l'autre.


    Historique

    Les premières observations de mirages semblent remonter à l'an -350, lorsqu'Aristote mentionne dans Meteorologica qu'il arrive que des promontoires paraissent anormalement grands dans certaines circonstances météorologiques et que le vent du sud-est fasse grossir les astres lors de leur coucher ou leur lever.

    «C'est là aussi ce qui fait qu'en mer, les cimes des promontoires paraissent plus élevées, et que les dimensions de tous les objets augmentent quand souffle le vent du sud-est. C'est encore ce qui se produit pour les objets qui paraissent à travers des brouillards ; par exemple, le soleil et les étoiles, quand ils se lèvent ou qu'ils se couchent, semblent plus grand que quand ils sont au milieu du ciel.»
    Aristote, Meteorologica traduit par J. Barthélemy Saint-Hilaire, A.Durand Libraire éditeur, 1863

    Ce passage fait partie d'un chapitre traitant de la réfraction de la lumière et de l'explication du phénomène d'arc-en-ciel. Il est fort probable que la déformation subie par les astres et l'agrandissement des «promontoires» soit dû à la réfraction de la lumière par l'air chaud porté par le sirocco, vent du sud-est qui est mentionné.

    D'autres mentions sont faites, de gens disparaissant de vue à cause de l'air «densifié par la chaleur» (Agatharchide in Sur la mer Érythrée) ou du soleil, déformé et entouré de «flammèches» (Agatharchide ibid.), ou encore de formes indistinctes, immobiles ou mouvantes, assimilées à d'étranges créatures (Diodore de Sicile in Bibliothèque historique Tome 2).

    Dans l′Histoire naturelle de Pline l'Ancien, une multitude de phénomènes physiques et astronomiques sont recensés dans le livre II, notamment la mention de Soleil multiples visibles le matin et le soir (Chapitre XXXII), et plus loin :


    «Sous le troisième consulat de Marius les habitants d'Ameria et de Tudertum virent des armés célestes venir se heurter du levant et du couchant, et celles qui étaient du côté du couchant furent mises en déroute. On a vu plusieurs fois le ciel lui-même en feu ; cela n'est pas étonnant : ce sont les nuages qui s'enflamment dans une grande étendue.» Pline l'ancien, Histoire naturelle traduit par Émile Littré, Firmin Didot et Cie, 1877

    Ce genre d'apparitions d'armées dans les airs, qui s'affrontent puis se retirent, est en réalité une occurrence récurrente dans les récits anciens. Flavius Josèphe mentionne dans sa Guerre des juifs des armées apparues en l'air, la même chose est décrite dans le livre II, Chapitre VII des Macchabées, des apparitions d'armées de spectres invoquées par les Huns lors du règne de Caribert Ier, etc. Ces armées qui violemment s'affrontent pourraient très bien être des fata morgana, mirages tremblotants et scintillants qui apparaissent à l'horizon.


    Tout au long de l'histoire les mirages sont mentionnés épisodiquement. Ainsi en 1799, Gaspard Monge consacre une partie de son récit de la campagne d’Égypte à discuter des mirages qu'il a pu observer dans le désert. Il décrit alors de manière qualitative et avec une approche assez juste le phénomène du mirage, c'est-à-dire non plus comme Aristote - de la réfraction dans de l'air densifié par de la vapeur d'eau - mais comme un phénomène de réfraction dans de l'air densifié par la température, avec une réflexion totale faisant que les rayons suivent une courbe.


    Dans le livre autobiographique de Ludovic Kennedy (en), Pursuit: The Chase and Sinking of the “Bismarck”, celui-ci décrit un incident qui aurait eu lieu vers le détroit du Danemark, en 1941, après le naufrage du Hood. Le Bismarck, poursuivi alors par les croiseurs anglais Norfolk et Suffolk, disparait dans le brouillard, hors de la vue des croiseurs. En quelques secondes, le bâtiment réapparait, croisant vers les bateaux anglais à grande vitesse. Les bateaux se séparèrent en urgence, anticipant une attaque imminente, et des observateurs des deux bateaux ne purent que constater avec étonnement la disparition soudaine du Bismarck, se fondant dans le brouillard. Les radars ayant enregistré sa position confirmèrent que le Bismarck n'avait pas dévié de sa course tout du long.

    Principe

    L'indice de réfraction de l'air n'est pas une constante : il évolue notamment avec la température et la pression atmosphérique, ainsi que l'humidité et plus généralement la composition de l'air. Les couches d'air froid par exemple, sont plus denses et de ce fait, leur indice est plus fort car l'indice évolue proportionnellement à la pression et inversement proportionnellement à la température. La superposition de couches d'air de plus en plus chaudes ou froides créent un gradient de température et de pression et donc d'indice pour l'air.

    Indice de l_air.png

    Dans son état normal et «stable» une colonne d'air dans l'atmosphère normale possède un gradient de température d'environ -1×10[SUP]-2[/SUP] °C⋅m[SUP]-1[/SUP] ; le gradient est négatif car la température a tendance à diminuer avec l'altitude. Le gradient d'indice de l'atmosphère provoque déjà des phénomènes dit de réfraction terrestre faisant que des objets situés légèrement sous la ligne d'horizon sont visible. Pour qu'un mirage ait lieu, il faut donc un gradient bien supérieur à cela, de plusieurs degrés par mètres. D'après Minnaert pour qu'un mirage ait lieu et ne soit pas une simple déformation de l'objet (comme un allongement ou une contraction sans effet d'inversion de l'image par exemple), il faut un gradient de température d'au moins 2 °C⋅m[SUP]-1[/SUP], voire 4 ou 5 °C⋅m[SUP]-1[/SUP].

    La loi de Descartes est comme suit : [​IMG] où :


    • n1 est l'indice du milieu d'où provient le rayon
    • n2 est l'indice du milieu dans lequel le rayon est réfracté
    • i est l'angle d'incidence du rayon, c'est-à-dire l'angle que forme le rayon avec la normale à la surface. Ici, on peut assimiler la normale à la direction du gradient.
    • r est l'angle de réfraction du rayon, c'est-à-dire l'angle que forme le rayon réfracté avec la direction du gradient.
    Ainsi, lorsque le gradient d'indice est suffisamment fort, le rayon lumineux va traverser de multiples couches d'air et être réfracté de multiple fois, décrivant une trajectoire courbe, jusqu'à réflexion totale du rayon. Dans le cas d'un mirage supérieur ou froid, les indices les plus forts sont à des altitudes plus faibles, de ce fait les rayons vont décrire une trajectoire ascendante et concave (par rapport à l'axe des altitudes) jusqu'à réflexion totale, où le rayon va s'incliner vers le sol. L'inverse se produit dans le cas d'un mirage inférieur dit chaud, les indices les plus forts sont à des altitudes plus grandes, de ce fait les rayons vont décrire une trajectoire descendante et convexe (par rapport à l'axe des altitudes).

    Propagation dans un milieu inhomogène
    Une approche générale du phénomène demande à ce que l'on considère la propagation d'un rayon lumineux dans un milieu inhomogène, dont l'indice varie comme une fonction continue des coordonnées du milieu [​IMG]. La fonction est continue car les changements de température ou de pression, même brusques, sont soumis aux phénomènes de conduction, convection, et sont donc d'un ordre de grandeur largement supérieur à la longueur d'onde de la lumière. Dans ces conditions l'eikonal de l'onde suit la loi suivante :

    [​IMG].
    Soit l'abscisse curviligne [​IMG], le rayon lumineux est donc décrit par [​IMG].

    Par définition, [​IMG] est tangent au rayon :

    [​IMG]

    On en déduit l'équation générale d'un rayon lumineux dans un milieu d'indice [​IMG] :


    [​IMG]

    Équation qu'il est possible d'utiliser pour tout type de gradient d'indice, comme pour les lentilles à gradient d'indice. Le problème est simplifiable dans certains cas particuliers comme en présence d'un gradient constant, le long d'un seul axe, etc. Ainsi quelques solutions peuvent être trouvées analytiquement mais la plupart des solutions de cette équation, surtout dans le cas d'un milieu inhomogène et variant de manière complexe en x, y, et/ou z amènent à des résolutions fastidieuses et numériques.

    Résolution simplifiée du problème de mirage
    Une résolution classique du problème de la propagation des rayons lumineux dans l'atmosphère lors d'un mirage peut cependant être faite en partant de la loi de Descartes [​IMG], où les angles i sont les angles d'incidence au niveau des couches superposées d'air et A est une constante, l'indice 0 indiquant les conditions limites au sol ou à l'origine des rayons lumineux.
    Comme dans l'air, pour un petit déplacement dz, le rayon lumineux se déplace de dx, formant un angle i avec l'axe des altitudes on trouve que :



    [​IMG].

    Si l'on considère une loi de variation de l'indice de l'air suivant [​IMG] et qu'on l'utilise dans la précédente formule, on aboutit à :

    [​IMG]
    On reconnaît la primitive de la fonction racine :

    [​IMG]


    Où l'on peut fixer la constante à l'aide des conditions aux limites et sachant la valeur de A :

    [​IMG]

    Solution générale qui est l'équation d'une parabole dont le «sens» est donnée par la constante k caractérisant le gradient d'indice et donnant l'extremum de la parabole donc des rayons lumineux.

    Mirage inférieur

    Le mirage inférieur ou mirage chaud est donc causé par le réchauffement des couches basses de l'air, ce qui a lieu très fréquemment dans les zones désertiques ou sur les routes chauffées par le soleil. Dans ces cas, l'air proche du sol peut atteindre des températures supérieures de près d'une dizaine de degrés aux températures des couches d'air plus élevées. Les rayons lumineux sont alors très courbés dans cette zone près du sol. On observe aussi très souvent un phénomène d'inversion de l'image : comme les rayons situés en haut de l'objet sont moins inclinés par rapport au gradient que les rayons du bas, ils subissent une réflexion totale plus bas et seront donc perçus en dessous des rayons du bas de l'objet. De ce fait, le mirage est sous l'objet et inversé par rapport à celui-ci.

    Comme ce phénomène repose sur un échauffement important de l'air au niveau du sol, des turbulences ont tendance à apparaître et donneront une impression de distorsion de l'image. C'est ainsi que les mirages que l'on voit apparaître sur les routes ne donnent pas une réflexion parfaite du ciel, mais une image instable, comme une flaque d'eau.


    Mirage supérieur

    La naissance d'un mirage supérieur dit «froid» survient lorsque l'air proche du sol est plus froid qu'en hauteur. Le gradient thermique de l'atmosphère est alors dirigé vers le haut et l'air est refroidi au niveau du sol : la température croit avec l'altitude sur une certaine distance. Ceci est le cas dans des lieux où la surface du sol est très froide (banquise, mer froide, sol gelé...) où ces couches d'air plus froid dites couches d'inversion apparaissent. L'image de l'objet peut être inversée ou non, parfois déformée par la convection de l'air, et sera au-dessus de l'objet réel.

    Dans un mirage supérieur, les rayons lumineux issus de l'objet vont suivre une trajectoire ascendante et concave comme expliqué précédemment. Une singularité de ce type de mirages apparaît lorsque les rayons suivent la courbe de la Terre : un objet situé sous l'horizon peut alors être perçu au-dessus. Ainsi la Corse peut être vue de Nice alors que son point culminant le Monte Cinto ne pourrait être observé en principe que d'un point bien plus élevé. De même des bateaux au-delà de l'horizon peuvent apparaître au-dessus, déformés. Il est possible que les mirages aient été la cause de légendes telles que celles du Hollandais Volant.

    Il est à noter que si le gradient de température est de 0,129 °C⋅m[SUP]-1[/SUP] les rayons lumineux seront suffisamment courbés par l'effet de mirage pour suivre la courbure de la terre tant que la couche d'inversion est présente.


    Effet Novaya Zemlya
    Les premiers témoignages de l'effet Novaya Zemlya remontent à 1597 lorsque l'expédition danoise de Willem Barents se retrouva piégée sur l'île de Nouvelle-Zemble, dans l'océan Arctique, alors qu'elle cherchait le passage du Nord-Est. L'équipage perdit le bateau en automne 1596 et fut obligé de rester sur l'île et d'y passer l'hiver. Le soleil se coucha pour la dernière fois le 6 novembre et il était prévu qu'il ne se lève pas avant le 8 février. Cependant le 24 janvier, l'équipage aperçu le soleil se lever à l'horizon. En théorie, le soleil était à 5°26' sous l'horizon. Bien que ces constatations aient été controversées à l'époque (notamment par Robbert Robbertszoon), elles tombèrent en désuétude avant d'être successivement reprises par Jean-Etienne Baills puis S. W. Visser qui démontrèrent leur véracité ainsi que l'explication physique du phénomène.

    L'effet Novaya Zemlya est un mirage froid particulier puisque deux couches d'air sont superposées : en bas, une couche d'air froid, sur une altitude suffisante, et au-dessus une couche d'air chaud servant de guide d'onde à la lumière. La couche d'inversion et la couche d'air chaud forment une thermocline qui, comme dans une fibre optique va guider les rayons lumineux et les empêcher de s’échapper dans l'atmosphère. Les rayons sont déjà affectés par l'effet de mirage et sont réfractés ; en atteignant la thermocline, la baisse soudaine de l'indice de réfraction de l'air fait que les rayons les plus inclinés sont renvoyés vers la Terre par réflexion totale. Les rayons lumineux sont alors guidés tant que la thermocline est présente, ceci impliquant des conditions météorologiques très favorables : temps calme, thermocline de plusieurs kilomètres, horizon dégagé. Le soleil apparaît alors même s'il est très en dessous de la ligne d'horizon, sous la forme d'une bande de lumière bifide.

    Fata Morgana et Fata Bromosa

    Certaines situations combinent les mirages inférieurs et supérieurs, par des profils d'indice de l'air particuliers, donnant alors une image irréelle au paysage lointain. Ce phénomène, observable notamment dans le détroit de Messine, avait été attribué par les hommes du Moyen Age à la fée Morgane, d'où le nom de cette manifestation curieuse des propriétés des rayons lumineux. La Fata Morgana est un mirage peu stable qui donne des images multiples, déformées et superposées de l'objet du mirage. Le mirage a l'apparence de tours et de constructions, de plateaux qui sont à l'origine du nom du phénomène, la fée Morgane étant réputée habiter sur la mystérieuse île d'Avalon et user de magie.


    La Fata Morgana est causée par la superposition de couches d'inversion et de couches d'air chaud avec des gradients plus ou moins forts. Ainsi ce qui était un rivage lointain est élevé au-dessus de l'horizon par une couche d'inversion alors que d'autres parties sont élargies, déformées par une couche d'air plus chaud ramenant une partie des rayons vers le sol. On observe ainsi des tours, allongées par les couches d'inversion, des plateaux élargis et superposés grâce aux couches d'air plus chaud.

    La Fata Bromosa, ou Brume de fée est provoquée par le même type de profil d'indices, mais a pour effet de créer une image plutôt plate avec de fortes variations de contraste. Les rayons sont réfractés majoritairement dans certaines zones seulement créant ainsi des parties sombres et d'autres très lumineuses donnant une impression de brouillard brillant. Ces deux effets peuvent être combinés, et il n'est pas rare que des Fata Bromosa soient incluses dans une Fata Morgana.


    _______________________

    ..........
     
    Dernière édition: 14 Décembre 2013
  5. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113

    Prévision météorologique


    La prévision météorologique est une application des connaissances en météorologie et des techniques modernes de prises de données et d’informatique pour prédire l’état de l’atmosphère à un temps ultérieur. L’histoire de la prévision du temps remonte aux temps immémoriaux avec les oracles et devins mais la science moderne date vraiment de la fin du XIX[SUP]e[/SUP] siècle et du début du XX[SUP]e[/SUP] siècle. Elle s’est cependant affirmée depuis la Deuxième Guerre mondiale alors que les moyens techniques comme le radar et les communications modernes ont rendu l’accès aux données plus rapides et plus nombreuses.

    Les lois régissant le comportement de l’atmosphère sont dérivées de la mécanique des fluides. On peut grâce à des modèles mathématiques et des superordinateurs les résoudre. Malgré tout, même si la résolution de nos données a augmenté exponentiellement, la prévision reste autant un art qu’une science. En effet, l’état de l’atmosphère peut être compris dans la théorie du chaos et ne peut jamais être complètement défini ce qui laisse place au facteur humain dans la prévision.

    Histoire de la prévision météorologique

    "Imaginons une sphère en rotation de 12 800 kilomètres de diamètre avec une surface rugueuse et surmontée de 40 kilomètres d’un gaz mixte dont la concentration des composantes varie avec le temps et l’espace. Le tout est chauffé par une fournaise nucléaire situé à 150 millions de kilomètres. Imaginons également que cette sphère tourne autour du réacteur et que les différents endroits de sa surface sont réchauffés différemment selon le point où en est la trajectoire. Imaginons en plus que la couche de gaz reçoit également de la chaleur de la surface de la sphère, en général de façon constante mais quelques fois de façon violente et soudaine.

    Après avoir regardé l’évolution de ce processus durant un certain temps, imaginons qu’on vous demande de prédire quel sera son état en un point de sa surface un, deux ou même plusieurs jours dans le futur. C’est essentiellement ce qu’on demande jour après jour aux météorologistes."

    - Bob Ryan, météorologiste, Bulletin of the American Meteorological Society, 1982.

    La vie et le travail de bien des gens dépendent de la météorologie. Les devins de l’âge de pierre et les prêtres de l’antiquité ont essayé de prédire le temps qu’il ferait pour pouvoir obtenir de bonnes récoltes, éviter les inondations, etc. Dès l'Antiquité, on compose en Chine un ouvrage sur la météorologie qui comprend également des prévisions, le Nei Jing Su Wen. En 650 av. J.-C., les babyloniens avaient déduit le temps qu’il ferait grâce à l’observation des types de nuages et autour de 340 av. J.-C., Aristote décrivait les patrons météorologiques. En 300 av. J.-C., le philosophe Théophraste publie même "Les signes du temps", premier ouvrage de prévisions météorologiques en Europe.

    Les anciennes méthodes de prévision du temps étaient toutes basées sur l’expérience de patrons répétitifs d’évènements en un endroit. Par exemple, les marins arrivaient à prédire la venue d’une tempête à l’arrivée de nuages s’épaississant. Ceci donna lieu à une multitude de dictons tels : Si le soleil se couche tout rouge, il fera beau demain, certains confirmés par la science moderne et d’autre purement anecdotiques.

    Les explorateurs ont depuis longtemps noté dans leurs carnets le temps qu’il faisait et ces données auraient pu donner lieu à des prévisions mais c’est seulement avec la venue du télégraphe, en 1837, que ces informations ont pu être colligées rapidement afin de se faire une idée précise à un instant donnée de l’état de l’atmosphère. En analysant ces données sous forme de carte, les premiers météorologistes ont pu voir le déplacement temporel des systèmes et faire des extrapolations.

    Francis Beaufort et Robert Fitzroy sont parmi les premiers à faire de telles prévisions. Malgré le scepticisme de leurs contemporains, ces deux membres de la Royal Navy et de cercles influents, réussirent à imposer leur travail scientifique grâce aux résultats obtenus.
    La venue du XX[SUP]e[/SUP] siècle a vu le développement des équations qui régissent l’atmosphère par différents scientifiques dont l’école norvégienne, avec Carl-Gustaf Rossby à sa tête. Ce qui fut éventuellement traduit en programme informatique quand les ordinateurs sont devenus assez puissants dans les années 1970.


    Techniques de prévision

    Les étapes d’une prévision météorologique:
    • Acquisition des données.
    • Analyse du prévisionniste (météorologue qui prévoit opérationnellement par contraste avec celui qui est en recherche):
      • Analyse des données.
      • Application de techniques expérimentales pour estimer le déplacement et le comportement des systèmes indépendamment des modèles numériques.
    • Modèle numérique :
      • Assimilation des données dans un modèle numérique de prévision
      • Résolution des équations de l’atmosphère par le modèle numérique pour un temps futur
      • Post-traitement des résultats pour extraire les variables désirées
    • Le prévisionniste compare ses estimations et les sorties d’un ou de plusieurs modèles pour juger de la validité de ceux-ci, juger entre les différentes solutions et les corriger au besoin.

    - Acquisition des données
    Les données sont acquises par un ensemble de systèmes qui donnent la pression, la température, l’humidité, la direction et vitesse du vent, les précipitations, les conditions nuageuses, etc., à la surface et en altitude. Ces systèmes ont chacun leur fréquence de prise de donnée.
    • Les observations horaires, spéciales et aux six heures :
      • Les stations de surface comme les observations d’aéroports (humaine ou automatique) sous forme de METAR
      • Les stations automatiques hors aéroports
      • Les bouées fixes ou dérivantes.
    • Les observations aux 12 heures :
      • Les stations de lâcher de ballons-sondes qui donnent des observations sur la structure verticale de l’atmosphère
      • Les données de stations de surface climatologiques.

    • Les données de télédétection :

      • Les radars météorologiques
      • Les satellites météorologiques.
    - Analyse du Prévisionniste
    Il analyse l'ensemble des données de surface et d’altitude à partir de cartes tracées par ordinateur ou manuellement pour se faire une idée de la circulation atmosphérique actuelle, de la trajectoire passée des systèmes et de leur état de développement. Grâce à des techniques héritées de l’école norvégienne de météorologie, il analyse les fronts, les creux de surface et d’altitude, les advections du mouvement vertical, etc. pour déterminer la trajectoire future de ces systèmes. Ces techniques ont fait leur preuve, pour des périodes allant jusqu’à 48 heures et même plus pour certaines d’entre-elles. Il obtient ainsi une idée qualitative de ce qui va se passer.

    - Prévision numérique
    Depuis le milieu du XX[SUP]e[/SUP] siècle, le développement des ordinateurs a permis d'utiliser les équations qui régissent l'atmosphère afin de simuler l'évolution des systèmes météorologiques. Au début, il fallait les simplifier car les ordinateurs étaient peu performants. Avec le développement de la technologie, il a été possible de graduellement augmenter la complexité du calcul pour donner des solutions de plus en plus près de la réalité, sans encore être parfaites. La prévision numérique comprend :

    Analyse

    • L’assimilation des données que le programme compare à sa plus récente prévision pour le même temps. Les différences entre la prévision et l’analyse sont calculées et un lissage entre les deux est fait. Si une donnée d’observation est trop éloignée de la prévision, elle est rejetée. En effet, elle est probablement mauvaise et causerait une instabilité dans le nouveau calcul de prévision. Cette méthode est appelée l’analyse variationelle à trois dimensions ou 3D-VAR.
    • Une nouvelle méthode pour faire cette analyse est de lancer le programme pour prévoir une certaine période (3 heures), ajuster les observations qui sont entrées avant et après l’heure d’analyse à cette simulation et revenir au temps initial pour refaire l’analyse. C’est ce qu’on appelle l’analyse variationnelle à 4 dimensions ou 4D-VAR.
    Simulation
    Une fois l’analyse complétée, le programme de simulation numérique démarre et calcule le changement de l’atmosphère pour des périodes allant jusqu’à 10 jours par pas de quelques secondes, minutes ou heures selon la configuration. Il existe différents logiciels pour ce faire à travers le monde. Ils utilisent différentes résolutions en accord avec la durée de temps désirée et la résolution spatiale. Par exemple, la France utilise trois modèles de calcul pour la petite, la moyenne et la grande échelle. Le modèle de large résolution donnant une solution grossière pour le modèle de moyenne résolution et ce dernier servant de champ d'essai pour le modèle de fine résolution.
    Depuis 2008, le modèle AROME (Application de la recherche à l'opérationnel à méso-échelle), calculé sur une maille de 2,5 km, remplace le modèle précédent de fine échelle ce qui améliore les détails des résultats de près de 100 fois par rapport au modèle ARPEGE, de moyenne échelle, qui a lui une résolution de 25 km x 25 km.

    Post-traitement
    Une fois la simulation terminée, un programme de post-traitement extrait les variables et les présente aux prévisionnistes sous forme de carte, tables de données, coupes verticales, etc. Ces données sont préalablement traitées pour retirer certains biais connus du modèle. C’est ce qu’on appelle le traitement par statistique des sorties du modèle (MOS en anglais). Par exemple, l’humidité de surface est encore un problème difficile à intégrer et simuler, le programme MOS d’humidité corrigera donc le biais de cette variable selon les écarts habituellement trouvés dans un modèle particulier.
    - Prévision finale
    Il arrive souvent que différents modèles suggèrent différentes solutions. Cela est dû à la façon dont les équations de l’atmosphère sont intégrées dans un modèle, à sa résolution et à l’état de l’atmosphère qui est parfois très instable et susceptible de grands changements à partir de petites variations de l’analyse initiale (voir théorie du chaos). Le prévisionniste compare son scénario avec les résultats obtenus par le ou les modèles numériques. Il peut ainsi se faire une idée des forces et des faiblesses des solutions qu'ils proposent et choisir la meilleure.
    L’expérience des effets locaux et du comportement récent de l’atmosphère permet aux prévisionnistes d’affiner la prévision à court et moyen terme. Il peut également changer le début de la prévision en modifiant les conditions de départ, ou espérées à court terme, pour des endroits particuliers que le modèle n’a pas pu prévoir (prévision immédiate). Il utilise pour cela les images satellitaires, celles des radars météorologiques, ainsi que toute autre donnée récente.


    - Présentation aux utilisateurs
    Une fois arrivé à une solution, le prévisionniste doit mettre celle-ci sous forme utile pour l’usager. Ces derniers sont :
    • Les médias : journaux, bulletins télévisés, radios, services météorologiques nationaux tels que Radiométéo au Canada, etc. (pour la diffusion à l'attention d'autres utilisateurs directs)
    • Le public (pour le tourisme, la vie quotidienne)
    • Les pilotes et navigants aériens, amateurs ou professionnels (pour la navigation aérienne)
    • Les marins, amateurs ou professionnels (pour la navigation maritime)
    • Les usagers spécialisés tels que : les déneigeurs, les compagnies d'électricité, etc. (pour adapter leurs activités)
    Chacun d’eux reçoit des produits sous la forme la plus utile pour leur opération. Ce sont traditionnellement des cartes ou des textes mais plus récemment, avec l’internet, des graphiques de tendances ou tout autre produit graphique.
    À l'attention du public, divers concepts ont été proposés par les médias pour présenter de façon rapide le temps qu'il fera d'une façon condensée, surtout depuis l'avènement des sites privés de météorologie et des chaînes d'information en continu. Un tel concept global et pseudo-objectif est appelé «chiffre météorologique». Il a été élaboré par Hugo Poppe en Belgique, puis dans une variante par Harry Geurts (KNMI) aux Pays-Bas. Il s'agit d'une valeur comprise entre 1 et 10, calculée à partir de critères quantitatifs choisis arbitrairement, concernant des phénomènes observables dont la durée et l'intensité sont mesurables et prévisibles (à court terme) : nébulosité, brouillard, précipitations, vent, température, possibilité d'orage, etc. Selon la pondération adoptée pour ces différents critères, la méthode permet de déterminer des chiffres météo adaptés à des activités humaines spécifiques : plages, sports d'hiver, cyclisme, etc. La valeur «10» indique des conditions météo très favorables à la pratique de l'activité visée et au contraire la valeur «1» indique une météo très peu propice à cette même activité.


    Prévisions d'ensemble

    Comme l’atmosphère est chaotique, malgré l’amélioration des connaissances les équations qui la régissent et la plus grande résolution des données recueillies, il est parfois impossible d’arriver à une solution unique comme mentionné précédemment. Depuis plusieurs années, les différents services météorologiques nationaux d’importance ont commencé à produire des ensembles de prévisions. Il s’agit de faire rouler un ou plusieurs modèles avec des analyses légèrement différentes et de comparer statistiquement les solutions pour arriver à la plus probable.
    Les centres comme le Centre européen de prévision météorologique à moyen terme (CEPMMT), le centre national américain de prévision environnemental (NCEP), le Centre météorologique canadien (CMC) et Météo-France font ce genre de prévision.



    ____________________

    Nom de la page : Prévision météorologique
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Prévision météorologique de Wikipédia en français (auteurs)
    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique



    ..........
     
    Dernière édition: 14 Décembre 2013
  6. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113


    Prévision numérique du temps


    La prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.


    Utilisations

    • En météorologie opérationnelle, la PNT est utilisée pour faire des prévisions dont les résultats numériques bruts subiront diverses formes de post-traitements pour les rendre utilisables. Les résultats seront traités par d'autres logiciels ou interprétés par des météorologues pour satisfaire les besoins spécifiques des utilisateurs. Cela inclut la prévision météorologique publique et des applications dans un grand nombre de domaines d'activité, tels que les transports, l'agriculture, la mitigation (atténuation) des désastres, etc.

    • Les résultats de prévisions numériques servent à piloter d'autres modèles spécialisés. Il peut s'agir par exemple de modèles de dispersion et de trajectoire de polluants atmosphériques, ou de modèles de chimie atmosphérique pour la prévision de la qualité de l'air (prévision de smog, notamment).

    • La PNT peut servir, en recherche, à faire des études de cas en « vase clos », pour étudier une facette ou un comportement particulier de l'atmosphère ou tester des améliorations au modèle en fonction de cas théoriques ou pratiques dont on connaît d'avance les résultats. Le modèle de PNT devient ainsi un laboratoire virtuel pour l'étude de l'atmosphère et l'amélioration des prévisions.

    • Les modèles de PNT peuvent aussi servir à la prévision climatique. On s'intéresse alors au comportement moyen de la prévision sur une longue période et non plus à prévoir des événements spécifiques. En changeant certains aspects de la prévision, comme le taux d'augmentation du gaz carbonique, les modèles de prévision climatique aident à formuler des scénarios quant aux conséquences du changement climatique. L'étude de ces scénarios contribue à guider le public et les décideurs face au réchauffement climatique.
    Historique

    En 1904, Vilhelm Bjerknes fut le premier à proposer que la prévision du comportement de l'atmosphère pourrait être traitée comme un problème de physique mathématique posé en fonction des conditions initiales. La discipline de la prévision numérique du temps fut fondée en 1922 par la publication du livre Weather Prediction by Numerical Process, du mathématicien britannique Lewis Fry Richardson. Deux décennies avant l'invention de l'ordinateur, Richardson envisagea de faire résoudre numériquement, par une armée de calculateurs humains, les équations développées par Bjerknes. La vision pionnière de Richardson commença à porter ses fruits en 1950, alors que Charney, Fjortoft et von Neumann réussirent la première prévision numérique du temps par ordinateur. Les premiers programmes de prévisions numériques opérationnelles furent instaurés au début des années 1960.

    En présence d'une forte demande pour des prévisions météorologiques dans de nombreux domaines d'activité, la discipline n'a cessé depuis lors de se développer, soutenue par l'augmentation de la puissance de calcul et nourrie de progrès théoriques énormes en méthodes numériques et en météorologie.


    Approche mathématique


    En physique et en génie, l'approche classique pour obtenir des équations possédant une valeur prédictive consiste à résoudre une ou plusieurs équations différentielles contenant la variable temporelle. Dans les cas les plus commodes, la solution exprime les variables à prévoir en fonction du temps et des conditions initiales (les valeurs des variables au moment choisi pour le début de la prédiction). Il suffit alors de nourrir cette équation avec les valeurs numériques requises pour obtenir une solution dite exacte. L'oscillateur harmonique est un exemple d'un problème classique qui se prête bien à cette approche.
    Le problème du comportement futur de l'atmosphère est beaucoup plus complexe et n'a de solution exacte que dans quelques sous-ensembles théoriques très restreints. Pour résoudre les équations de la PNT dans le monde réel, il faut utiliser les méthodes de l'analyse numérique.
    Ces méthodes permettent de reformuler les équations du comportement atmosphérique de manière à pouvoir les résoudre par de nombreuses itérations de calculs numériques bruts. On fait ainsi progresser, dans le modèle, l'état de l'atmosphère à partir d'un point de départ jusqu'à l'intervalle de prévision voulu.


    L'inconvénient de ces méthodes numériques est qu'elles exigent de faire une approximation de la continuité du temps et de l'espace sur une grille de calcul; la simulation devient ainsi discontinue dans le temps et l'espace. Les résultats, visualisés sur leur grille de calcul, ont une apparence « pixelisée », semblable à une image numérique. De même, le temps n'est plus une variable continue, les calculs sautant d'une étape temporelle à la suivante.

    Exemple typique: l'une des configurations opérationnelles du modèle GEM d'Environnement Canada (en date de 2005) morcelle l'espace de l'Amérique du Nord et les eaux adjacentes en tuiles de 15 km de côté. La taille de ces tuiles définit la résolution horizontale, ou la maille du modèle. De plus, le modèle représente la dimension verticale de l'atmosphère en la divisant en 58 niveaux. Et finalement, chaque ronde de calculs du modèle fait avancer la prévision de 450 secondes. L'intervalle de temps-modèle entre les rondes de calculs est appelé le pas de temps.

    En règle générale, il est souhaitable de faire en sorte que le modèle ait la maille la plus fine possible. Cela augmente le réalisme du modèle et minimise l'accumulation de petites erreurs de calculs inhérentes aux méthodes de l'analyse numérique. Par ailleurs, pour une résolution donnée, il existe un pas de temps maximum qu'il ne faut pas dépasser afin de préserver la stabilité et le réalisme des résultats numériques.


    Paramétrisation sous-maille

    Pour obtenir une bonne prévision, il faut aussi tenir compte de phénomènes qui sont plus petits que la résolution du modèle (phénomènes dits sous-maille). Par exemple, un orage est considérablement plus petit que la maille de la plupart des modèles à grande échelle ; pris isolément on pourrait se permettre de le négliger dans le cadre d'une prévision à l'échelle d'un pays ou d'un continent. Mais une zone orageuse, comprenant de nombreux orages dans un domaine géographique étendu, aura un impact important sur le déroulement du cas qui fait l'objet de la prévision, de par la production d'une quantité appréciable de pluie et de son effet dans le bilan énergétique de l'atmosphère. Plus fondamentalement encore : laissé à lui-même, le modèle pourrait créer des orages dont la taille horizontale égalerait la maille du modèle, ce qui est complètement irréaliste et fausserait de manière brutale l'évolution de la prévision. On doit donc donner aux orages une existence implicite au sein du modèle afin de dissiper l'énergie convective en respectant les considérations d'échelle.

    La représentation de l'influence moyenne à grande échelle des phénomènes de la petite échelle est appelée paramétrisation. Les phénomènes sous-maille les plus communément paramétrisés par les concepteurs des modèles sont :

    • La convection verticale (dont font partie les orages)
    • La physique des nuages (condensation, collection et collision des gouttes, effet Bergeron, changements de phase, etc.)
    • Les effets radiatifs atmosphériques (rayonnement de la chaleur)
    • L'interface surface-air :
      • Échanges de chaleur et d'humidité entre la surface et l'atmosphère
      • Frottement et turbulence près du sol
    • L'effet des montagnes et des irrégularités du terrain :
      • Effet de blocage du vent
      • Ondes atmosphériques en aval des montagnes
    Le paramétrage des phénomènes physiques ne compense pas complètement les limitations imposées par un espacement trop grand de la maille des modèles. Le choix et l'ajustement des schémas de paramétrisation a un impact important sur la qualité des prévisions.

    Couverture géographique et intervalle de prévision

    Pour répondre à des besoins immédiats en matière de prévision du temps, il faut atteindre un compromis acceptable pour maximiser la résolution spatio-temporelle du modèle tout en tenant compte:

    • de l'intervalle de prévision voulu (48 heures, dix jours, trois mois ?)
    • de la taille du domaine géographique de prévision (pays, continent, monde ?)
    • des échéances de production et des exigences de fiabilité
    • des ressources informatiques, économiques et humaines disponibles
    Pour les prévisions à court terme, l'état de l'atmosphère dans des régions éloignées importe peu. Une perturbation actuellement sur l'Amérique mettra quelques jours à se propager et à faire sentir son influence sur l'Europe. On peut alors choisir de concentrer une zone de maille fine du modèle sur la région d'intérêt, négligeant ainsi les phénomènes lointains. On parle alors d'un modèle régional.
    Pour des prévisions à plus long terme, disons au-delà de deux ou trois jours, il devient nécessaire d'augmenter la couverture du modèle à un hémisphère complet ou encore à tout le globe, afin de bien traiter les phénomènes encore lointains qui se propageront vers la zone d'intérêt. Pour la même raison, la maille du modèle est répartie de manière uniforme sur le globe. Les modèles hémisphériques étant tombés en désuétude, ce type de prévision échoit au modèle global.

    - Considérations informatiques
    En théorie, en augmentant la résolution du modèle, on en augmenterait le réalisme et on réduirait le besoin de recourir à la paramétrisation; toutefois, cela ne peut se faire qu'à un coût informatique et économique considérable, surtout s'il faut obtenir la prévision à l'intérieur d'échéances serrées.
    Exemple: si on double la résolution spatiale d'un modèle donné, le nombre de points dans la grille de calcul augmente d'un facteur 8; et si l'on réduit par la même occasion de moitié le pas de temps (doublant ainsi la résolution temporelle), la prévision devient donc 16 fois plus coûteuse informatiquement que la version précédente du modèle. Pour faire face à ce problème, il ne suffit pas de multiplier la puissance brute de calcul: le volume de données à transférer lors des calculs et lors de la mise en stockage des résultats augmente lui aussi par le même facteur. On peut ainsi voir que les opérations d'entrée-sortie, qui constituent un goulot d'étranglement dans tout type d'ordinateur, peuvent devenir un obstacle sérieux à l'augmentation de la résolution des modèles de PNT.

    Sources d'erreur

    • Données initiales: erreurs de mesure et d'analyse
    • Couverture de données: typiquement plus pauvre sur les océans et dans les zones peu peuplées ou économiquement défavorisées
    • Erreurs inhérentes aux méthodes de calcul numérique adoptées
    • Erreur causée par la maille du modèle: plus la maille est grossière, moins le modèle est apte à bien représenter les phénomènes de moyenne et petite échelle
    • Erreurs de paramétrisation
    - Importance des données initiales et de l'analyse
    Même un modèle parfait (exempt des trois dernières sources d'erreurs) ne pourrait produire une prévision parfaite, car les erreurs dans les conditions initiales iront en s'amplifiant lors de la prévision et celle-ci divergera de la réalité.

    Il est donc nécessaire de connaître avec le plus de précision possible l'état initial de l'atmosphère. Déterminer cet état, appelé analyse est en soi un grand défi scientifique qui exige des ressources mathématiques et informatiques comparables à celles dévouées à la prévision elle-même. Les sources de données sont disparates, traditionnellement constituées des observations de surface, s'y ajoute les données de radiosondage. Actuellement les mesures satellites représentent la source de données la plus importante, et depuis peu, les réflectivités radar sont également prises en compte dans les modèles de méso-échèle.

    Cependant l'utilisation des seules données d'observation n'est pas suffisantes, d'une part le nombre de variables d'un modèle numérique est supérieur au nombre d'observations, d'autre part une analyse effectuée directement par interpolation des observations aboutirait à un comportement instable du modèle. C'est une des raisons de l'échec des premières tentatives de modélisation du comportement de l'atmosphère par Richardson.
    Pour construire l'analyse, on a donc recours à une ébauche, c'est-à-dire la prévision effectuée précédemment, généralement 6 ou 12 heures auparavant. Cette ébauche est alors corrigée pour s'ajuster au plus près des observations, tout en tenant compte des erreurs d'observation. L'approche la plus communément utilisée actuellement utilise les méthodes du calcul des variations pour déterminer le meilleur compromis entre l'ébauche et les observations, compte tenu de leurs erreurs respectives. Cette approche est désignée par le terme « 3D-Var ».

    Les mesures satellites induisent une autre difficulté, elles ne sont pas effectuées aux heures synoptiques (0UTC, 6UTC, 12UTC et 18UTC). Pour tenir compte du décalage temporel entre l'heure de l'analyse et l'heure des observations, l'analyse est préférentiellement effectuée sur une fenêtre temporelle, et non à un instant donné. On parle alors d'une analyse 4D-Var.
    Toutes ces méthodes constituent l'assimilation de données, devenu un domaine de recherche à part entière.

    Prévisions d'ensembles

    Dans les premières décennies d'existence de la prévision numérique du temps, on devait se satisfaire de faire tourner un modèle à la plus haute résolution permise par les contraintes informatiques, et à adopter cette prévision telle quelle. Cette approche suppose implicitement que si les conditions initiales étaient connues parfaitement, et que le modèle lui-même était parfait, la prévision qui s'ensuivrait simulerait parfaitement le comportement futur de l'atmosphère. On qualifie cette approche de déterministe.

    En pratique, ni les observations, ni l'analyse, ni le modèle ne sont parfaits. Par ailleurs, la dynamique atmosphérique est très sensible, dans certaines conditions, à la moindre fluctuation. Une nouvelle approche probabiliste a donc été développée, celle de la prévision d'ensemble. La prévision d'ensemble sacrifie la résolution afin de pouvoir consacrer des ressources informatiques à faire tourner simultanément de nombreux exemplaires de modèles sur le même cas de prévision. Dans chaque cas, l'analyse est délibérément rendue légèrement différente des autres membres de l'ensemble, à l'intérieur des incertitudes intrinsèques de mesure ou d'analyse. Les scénarios plus ou moins divergents des prévisions offertes par les membres de l'ensemble permettent de quantifier la prédictibilité de l'atmosphère et d'offrir une marge d'erreur statistique sur la prévision. Le défi dans la conception d'un tel système est de faire en sorte que les fluctuations qu'on y observe constituent un signal représentatif de l'incertitude naturelle de la dynamique atmosphérique.

    Certains systèmes de prévision d'ensemble (SPE) font aussi varier les méthodes de paramétrage des modèles membres de l'ensemble afin qu'une partie des fluctuations des prévisions représente les incertitudes de modélisation. Dans la même veine, il y a un intérêt marqué, dans la communauté de recherche sur les prévisions d'ensembles, envers les ensembles multi-modèles (c’est-à-dire combinant des modèles de différentes conceptions) et l'agrégation de SPE de différents pays en un super-ensemble. Il existe en ce moment (2006) deux efforts concrets en ce sens, soit le Système nord-américain de prévision d'ensemble (Canada, États-Unis, Mexique) et le "THORPEX Interactive Grand Global Ensemble", ou TIGGE (sous la coordination de l'Organisation météorologique mondiale).


    Approche opérationnelle

    La mise en œuvre de la PNT aux fins de la prévision opérationnelle du temps (par opposition à la recherche pure) suppose invariablement les étapes suivantes, dont la mise en œuvre peut différer quelque peu selon le lieu et les circonstances d'application:

    • Acquisition des données d'observations météorologiques (de stations terrestres, navires, aéronefs, radio-sondes, données satellitaires de mesures à distance, etc)
    • Décodage et contrôle de la qualité des observations
    • Analyse (élaboration d'une représentation numérique de l'état de l'atmosphère au début de la prévision)
    • Lancement du modèle de prévision avec l'analyse comme point de départ
    • Post-traitement des sorties du modèle: production d'images, de bulletins, application de méthodes statistiques de prévision, interprétation humaine
    • Transmission de la prévision à la clientèle dans une forme applicable au soutien à diverses activités (agriculture, transport, santé, prévisions environnementales, planification économique, etc)
    • Vérification des prévisions a posteriori et évaluation de la performance du modèle
    - Exemple de France
    Météo-France utilise actuellement pas moins de trois modèles numériques, telles trois boîtes imbriquées les unes dans les autres pour émettre ses bulletins. L'IFS (Integrated Forecasting System), calculé par le Centre européen de prévision météorologique à moyen terme à Reading en Grande-Bretagne, donne une prédiction pour l'Europe avec une maille mondiale de 25 km de côté. Arpège (Action de recherche petite échelle /grande échelle) de Météo France utilise le résultat et refait le calcul avec une maille de 25 km sur la France pour une échéance de un à trois jours, mais moins précise ailleurs. Aladin (Aire limitée et adaptation dynamique) reprend les résultats pour l'Europe de l'Ouest avec une précision de 10 km.

    Depuis 2008, le modèle AROME (Application de la recherche à l'opérationnel à mésoéchelle) calcule sur une maille de 2,5 km (cent fois plus précise en surface que le modèle Arpège et près de dix fois plus qu’Aladin). Le calcul intègre en continu et réajuste les prévisions à partir des informations des stations météorologiques, navires, bouées, avions, radar, satellites… et intègre aux données de base : les vents, les précipitations et l'humidité de l'air fournies par les satellites GPS. Le modèle évalue aussi la fiabilité de la prédiction.


    Principaux centres d'application

    Bien qu'il y ait une croissance notable de l'application de la PNT avec des moyens relativement modestes, la PNT de pointe exige une infrastructure informatique considérable qui la place parmi les grands défis de l'informatique moderne. La mise en œuvre de la PNT est généralement confiée à des organisations gouvernementales ou même supra-gouvernementales. Les leaders mondiaux de la PNT sont en ce moment (par ordre alphabétique):

    Il convient de remarquer que les grands opérateurs de centres de PNT, en plus de fournir des services de prévision du temps, font aussi une part importante de la recherche scientifique dans le domaine. Encore une fois, les questions d'infrastructure y sont pour quelque chose: le super-ordinateur étant en substance le laboratoire du chercheur en PNT. De plus, la proximité de la recherche et des opérations aide à accélérer la mise en pratique des innovations scientifiques.


    ____________________________________
    Nom de la page : Prévision numérique du temps
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Prévision numérique du temps de Wikipédia en français (auteurs)
    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique



     
  7. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113

    Prévision immédiate



    La prévision immédiate (Nowcasting en anglais) en météorologie est une prévision de très court terme des conditions météorologiques de méso-échelle au cours d'une période allant jusqu'à 2 ou 3 heures selon l’Organisation météorologique mondiale et jusqu'à six heures selon d'autres organismes dans le domaine. Cette prévision est faite à partir des éléments connus du temps, y compris ceux obtenus par des moyens de télédétection, et en extrapolant leur déplacement à un temps futur en utilisant des techniques qui tiennent compte d'une possible modification. Ce type de prévision tient donc compte de détails que ne peuvent résoudre les modèles de prévision à plus long terme.


    Principe

    La prévision immédiate utilise l'observation actuelle du temps par les stations météorologiques de surface pour savoir les tendances actuelles du déplacement des systèmes météorologiques, les données des radars météorologiques pour connaître à tout moment l'étendue et la direction de déplacement des précipitations, les images des satellites météorologiques pour connaître la nature et le déplacement des nuages et les données de foudre pour repérer les zones orageuses.

    Le météorologiste extrapole ensuite le mouvement de ces systèmes grâce aux données obtenus. Cependant, il doit tenir compte de la modification d'intensité et des effets locaux de petite échelle dans le temps. Ceci est obtenu en appliquant certaines règles venant du comportement de l'atmosphère et des tendances notées par son analyse. Il existe maintenant des logiciels informatiques qui aident le prévisionniste dans son travail. Ce sont des systèmes experts qui combinent les données venant des modèles de prévision numérique du temps à plus long terme, les déclencheurs notées par les observations et les tendances actuelles. Par exemple, Météo-France utilise le programme «ASPIC» pour extrapoler les précipitations et le National Weather Service expérimente un programme nommé « AutoNowcaster » développé par UCAR pour le déplacement des orages.

    Utilisation

    La prévision météorologique de un jour à plusieurs jours permet de planifier la tenue des événements et activités extérieures. Cependant, une fois l'activité entreprise, les autorités doivent se tenir au courant des derniers développements au cas où un changement dans les conditions se produirait. C'est ainsi que la prévision immédiate permet de suivre précisément le début ou la fin des précipitations, des orages, des vents, etc. une fois l’activité en cours.

    Les activités de plein air, les compétitions sportives, les spectacles extérieurs, l’entretien des routes, la gestion des aéroports, etc. sont autant de domaines qui utilisent la prévision immédiate. En plus, la sécurité de la population et à l'aviation est assurée par l'envoi d’alertes météorologiques par les services nationaux de météorologie lorsque des conditions menaçantes reliées à des phénomènes de très petite échelle se forment (pluie torrentielle sous orage, grêle, vents violents, tornade, etc. ). Leur déplacement peut être donné par la prévision immédiate.

    Coordination

    La prévision immédiate peut demander la coordination de plusieurs domaines. Par exemple, la méthode de prévision des précipitations s'appuyant sur l'imagerie radar extrapole dans le temps celles-ci. Cependant, l'effet de fortes pluies sur un bassin versant doit faire entrer en jeu l'expertise des services d'hydrologie du territoire qui possèdent les caractéristiques de débit des cours d'eau, de ruissellement et de saturation des sols. Une fois que le météorologiste a prévu les quantités de pluie au cours des prochaines heures, l'hydrologiste peut en tirer des conséquences sur le niveau des eaux et de possibles inondations.

    Recherche

    La prévision à court terme est aussi vieille que la prévision météorologique elle-même. Au cours du XIX[SUP]e[/SUP] siècle, les premiers météorologues modernes utilisaient des méthodes d'extrapolation pour prédire le déplacement des dépressions et des anticyclones qu'ils analysaient sur les cartes de surface. Les chercheurs ont par la suite appliqués les lois de la dynamique des fluides à l'atmopshère et ont pu développer la prévision numérique du temps telle qu'on la connait aujourd'hui. Cependant, les problèmes de résolution des données et de paramétrisation des équations primitives atmosphériques laissent encore une incertitude sur les prévisions à petite échelle, dans le temps et l'espace.

    L'arrivée des moyens de télédétection, comme le radar et le satellite, en plus des développements rapides de l’informatique, aident grandement à combler ce trou. Plusieurs pays ont développé des programmes de prévision immédiate comme mentionné antérieurement. L'Organisation météorologique mondiale (OMM) supporte ces efforts et tient des campagnes de tests de ces systèmes à diverses occasions. Par exemple, aux Jeux olympiques de Sydney et de Beijing, en Chine, plusieurs pays ont été invités à utiliser leurs logiciels en support aux jeux. Le Canada va quant à lui démontrer les capacités de son programme SNOW V-10 aux Jeux olympiques d'hiver de 2010.
    Plusieurs conférences scientifiques abordent le sujet. En 2009, l'OMM a même organisé un symposium seulement sur la prévision immédiate.


    __________________________________
    Nom de la page : Prévision immédiate
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Prévision immédiate de Wikipédia en français (auteurs)
    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique
     
  8. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113



    Satellite météorologique



    Un satellite météorologique est un satellite artificiel qui a comme mission principale le recueil de données utilisées pour la surveillance du temps et du climat de la Terre. Chaque nouvelle génération de satellite comporte des senseurs plus performants et capables d'effectuer des mesures sur un plus grand nombre de canaux ce qui permet de les utiliser pour différencier les divers phénomènes météorologiques : nuages, précipitations, vents, brouillard, etc.


    Plusieurs pays lancent et maintiennent des réseaux de satellites météorologiques : les États-Unis, les pays européens avec l’agence spatiale européenne (ESA), l’Inde, la Chine, la Russie et le Japon. Tous ces satellites assurent une couverture globale de l’atmosphère.

    [​IMG]
    Description : Satellite METEOSAT de première génération
    Date et heure : 25 mars 2005 à 13:08
    Utilisateur : GDK
    Source: http://goes.gsfc.nasa.gov/text/geonews.html
    (http://goes.gsfc.nasa.gov/pub/goes/METEOSAT.gif)

    Status: PD-USGov-NASA
    Ce fichier provient de la NASA.
    Sauf exception, les documents créés par la NASA
    ne sont pas soumis à copyright.
    Pour plus d'informations,
    voir la politique de copyright de la NASA.

    _____________________________________

    Historique


    Le premier satellite météorologique, le Vanguard 2, fut lancé le 17 février 1959 pour mesurer la couverture nuageuse. Malheureusement, lors de sa satellisation, son axe de rotation fut mal orienté et il ne put donner que peu d’informations. Le TIROS-1 fut le premier succès dans ce domaine. La NASA le lança le 1[SUP]er[/SUP] avril 1960 et transmis durant 78 jours. Il fut l’ancêtre du programme Nimbus qui mena au développement des satellites météorologiques modernes lancés par la NASA et opérés par le NOAA.

    Pour répondre à leurs besoins spécifiques, différents pays ou association de pays ont démarré ensuite leur propre programme. En Europe, les satellites Météosat, de première génération, ont été réalisés dans le Centre spatial de Cannes Mandelieu par un consortium créé à cet effet: COSMOS, sous maîtrise d'œuvre d'Aerospatiale. Leur premier satellite, Météosat 1, a été lancé le 23 novembre 1977.

    Satellites géostationnaire et polaire


    Il existe deux types de satellites météorologiques : les satellites géostationnaires et circumpolaires.

    Satellite géostationnaire
    Situés directement au-dessus de l’équateur et à une distance telle (35 880 km), les satellites géostationnaires orbitent de façon synchrone avec la Terre. Les satellites géostationnaires peuvent donc prendre des informations en continu de la même portion du globe, surtout dans les spectres visibles et infrarouges.

    Ces informations sont utilisées par les météorologues pour suivre les systèmes météorologiques visuellement en plus d’extraire des données dérivées (température et albédo) pour connaître la structure de l’atmosphère et des nuages, données qu’on injectera dans les modèles de prévision numérique. Les médias agrémentent également leurs bulletins météo d’animations en boucle venant de ces satellites.

    Les satellites géostationnaires ont une résolution maximale à leur sous-point, le point de l'équateur à la verticale duquel ils sont situés. Cette résolution diminue en allant vers les bords du disque terrestre à cause de la parallaxe de l’angle de visée de plus en plus rasant. Ainsi, par exemple, au-dessus de 65 degrés de latitude Nord ou en dessous de 65 degrés de latitude Sud, ils deviennent presque inutilisables.


    Les différents pays cités plus haut maintiennent une flotte de ces satellites :

    • États-Unis : La série GOES couvrant les Amériques et une partie de l’Atlantique et du Pacifique. Les GOES-11 et GOES-12 sont ceux actifs en 2006 mais fin mai, le GOES-N a été mis en orbite et deviendra GOES-13 une fois activé.
    • Agence spatiale européenne : L'ESA maintient la série des Meteosat avec les numéros 6, 7 et 8 couvrant l’Atlantique et le numéro 5, l’océan indien.
    • Japon : Le MTSAT-1R est positionné à 140°E et couvre le Pacifique.
    • Inde : Le METSAT-1 / KALPANA-1 stabilisé à 74°E.
    • Russie : A positionné le GOMS à la longitude de Moscou.
    • Chine: Utilise la série Feng-Yun(風雲) dont le plus récent est le FY-2C à 105°E lancé en octobre 2004.
    Satellites circumpolaires
    Pour complémenter les satellites géostationnaires, les satellites circumpolaires orbitent autour de la Terre à basse altitude (~720 - 800 km) selon une trajectoire avec une forte inclinaison passant près des pôles. Ils sont héliosynchrones, c’est-à-dire que leur axe de rotation est perpendiculaire à l’axe entre le Soleil et la Terre. Ils passent deux fois au-dessus de n’importe quel point de la surface du globe à chaque jour à la même heure solaire.

    Comme ils sont plus rapprochés de la surface, ces satellites ont une meilleure résolution. Ils peuvent distinguer plus facilement les détails de température des nuages et leur forme visible. Les feux de forêt et la brume sont beaucoup plus évidents. On peut même en extraire des informations sur le vent selon la forme et le déplacement des nuages. Malheureusement, comme ils ne couvrent pas continuellement la même surface terrestre, ils ont un usage plus limité pour surveiller la météo en temps réel. Ils sont surtout utiles dans ce domaine dans les régions polaires où des images composites venant des différents satellites sont plus fréquentes et permettent de voir ce qui est presque invisible aux satellites géostationnaires.

    Cependant, pour des utilisations de plus longue haleine, ces satellites donnent des informations importantes. Les données infrarouges et visibles recueillies par ces satellites permettent de suivre le déplacement à moyens termes de phénomènes tels les courants marins comme le Gulf Stream et El Nino et les masses d’air avec une précision beaucoup plus grande.

    Les États-Unis utilisent la série TIROS de NOAA en binômes sur des orbites opposées (un vers le nord et l’autre vers le sud). Actuellement, les NOAA/TIROS 12 et 14 sont en réserve en orbite alors que les 15, 16, 17 et 18 sont utilisés (2006). La Russie possède les séries Meteor et RESURS. La Chine et l’Inde ont également des satellites circumpolaires.


    Instrumentation


    Les satellites météorologiques sont munis à l'origine de deux types de senseurs :

    • Des radiomètres pour la télémesure de la température de l’atmosphère et des hydrométéores qui s’y trouvent. Ils opèrent dans le spectre infrarouge. Les premiers instruments ne « regardaient » que quelques longueurs d’onde alors que les nouvelles générations divisent ce spectre en plus de 10 canaux
    • Des radiomètres dans le visible pour noter la brillance de la réflexion solaire sur les différentes surfaces. Ces données sont corrigées par les programmes d’analyse au sol selon l’angle du soleil pour uniformiser les informations.
    Plus récemment, on y a ajouté :

    • Un sondeur qui effectue un sondage aérologique de l'atmosphère terrestre à distance pour en tirer la structure de température et d'humidité.
    Exploitation des données recueillies

    Les informations des satellites météorologiques peuvent être complémentaires à d’autres types de satellites environnementaux pour suivre les changements de végétation, l’état de la mer, la fonte des glaciers. Leurs données sont également traitées pour en tirer la structure de l’atmosphère (stabilité, température, vents et humidité) ce qui supplémente les données de stations terrestres et aérologiques pour alimenter les modèles de prévision numérique du temps.

    En plus des informations purement météorologiques sur la température et la couverture des nuages on peut mentionner :

    • Mesure de la température de surface de la mer, de la couverture de glace en hiver et des déplacements des icebergs pour les marins et les pêcheurs ;
    • Études climatologiques de la progression des glaciers, des déserts pour l’hydrologie ;
    • Évolution de la fumée venant des feux de forêt, des cendres volcaniques (éruption du Mont Saint Helens par exemple), des tempêtes de sable au Sahara, etc ;
    • Étude de la pollution atmosphérique et des traînées de mazout en mer ;
    • Suivre l’évolution de la luminosité des villes pour des études de pollution lumineuse ou pour repérer une perte de courant nocturne ;
    • L'apparition de conditions favorables au développement des insectes nuisibles, aux épidémies, au gel, etc. ;
    • Les aurores boréales.
    Le ministère de la défense américain a ses propres satellites météorologiques dans le cadre du programme Defense Meteorological Satellite Program (DMSP). Ces derniers ont une résolution de quelques centaines de mètres (grosseur d’un navire) et une sensibilité lumineuse qui permet de voir dans le visible même la nuit. Le black-out de 1977 à New-York était particulièrement notable sur ces satellites circumpolaires qui peuvent également repérer les foyers d’incendie de forêt et même les sources couvant sous la surface.


    __________________________________
    Nom de la page : Satellite météorologique
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Satellite météorologique de Wikipédia en français (auteurs)
    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique


     
  9. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Satellite artificiel


    Un satellite artificiel est un objet fabriqué par l'homme, envoyé dans l'espace à l'aide d'un lanceur et gravitant autour d'une planète ou d'un satellite naturel comme la Lune. La vitesse imprimée par la fusée au satellite lui permet de se maintenir pratiquement indéfiniment dans l'espace en décrivant une orbite autour du corps céleste. Celle-ci, définie en fonction de la mission du satellite, peut prendre différentes formes — héliosynchrone, géostationnaire, elliptique, circulaire — et se situer à des altitudes plus ou moins élevées, classifiées en orbite basse, moyenne ou haute.

    Le premier satellite artificiel Spoutnik I est lancé par l'URSS en 1957. Depuis cette époque, plus de 5 500 satellites artificiels ont été placés en orbite (2007). Les satellites jouent désormais un rôle important à la fois sur les plans économique (télécommunications, positionnement, prévision météorologique), militaire (renseignement) et scientifique (observation astronomique, microgravité, observation de la Terre, océanographie, altimétrie). Ils sont, en particulier, devenus des instruments incontournables pour notre compréhension de l'univers physique, la modélisation des changements climatiques et le fonctionnement de la société de l'information.

    Un satellite artificiel est composé d'une charge utile, définie spécifiquement pour la mission qu'il doit remplir, et d'une plate-forme souvent standardisée assurant les fonctions de support comme la fourniture d'énergie, la propulsion, le contrôle thermique, le maintien de l'orientation et les communications. Le satellite est suivi par un centre de contrôle au sol, qui envoie des instructions et recueille les données collectées grâce à un réseau de stations terrestres. Pour remplir sa mission le satellite doit se maintenir sur une orbite de référence en orientant ses instruments de manière précise : des interventions sont nécessaires à intervalles réguliers pour corriger les perturbations naturelles de l'orbite générées, dans le cas d'un satellite terrestre, par les irrégularités du champ de gravité, l'influence du Soleil et de la Lune ainsi que la traînée créée par l'atmosphère qui subsiste en orbite basse.

    Les progrès techniques permettent aujourd'hui de mettre en orbite des satellites plus lourds (jusqu'à 6 tonnes et demi pour les satellites de télécommunications), capables de remplir des missions toujours plus sophistiquées (satellites scientifiques), avec une grande autonomie. La durée de vie d'un satellite, variable selon le type de mission, peut atteindre 15 ans. Les avancées de l'électronique permettent également de concevoir des micro-satellites capables d'effectuer des missions élaborées.

    La construction de satellites a donné naissance à une industrie très spécialisée mais les instruments les plus complexes sont encore souvent réalisés par des laboratoires de recherche. La conception d'un satellite, difficilement reproductible lorsqu'il ne s'agit pas d'un satellite de télécommunications, est un processus qui peut prendre une dizaine d'années dans le cas d'un satellite scientifique. Les coûts de fabrication qui peuvent monter à plusieurs centaines de millions d'euros et ceux de lancement (de l'ordre de 10 000 à 20 000 $/kg) limitent aujourd'hui le développement de cette activité qui, hormis le secteur des télécommunications très rentable pour les opérateurs, est subventionnée pour l'essentiel par les budgets publics.


    Principes physiques

    Mise en orbite
    Un objet lancé à la surface de la Terre décrit une trajectoire parabolique qui le ramène au sol sous l'influence de la gravité terrestre (cas A sur le schéma). Plus la vitesse initiale de l'objet est importante plus le point de chute est éloigné (cas B). Lorsqu'une certaine vitesse est atteinte, l'objet chute mais sans jamais atteindre le sol du fait de la courbure de la Terre (cas C). Pour que l'objet conserve indéfiniment sa vitesse, il faut toutefois que celui-ci se déplace dans le vide au-dessus de l'atmosphère, là où aucune force de traînée (frottement) ne s'exerce : à cette altitude en application du principe d'inertie aucune énergie n'est en effet nécessaire pour maintenir son mouvement.
    Pour qu'un objet soit satellisé autour de la Terre il faut que sa vitesse radiale par rapport au centre la Terre (la vitesse d'injection) soit de 7 700 mètres par seconde pour une orbite circulaire à 200 km au-dessus de la Terre (au-dessous de cette altitude la traînée est trop importante). Si on communique une vitesse supérieure à un satellite circulant à la même altitude, l'orbite devient elliptique (cas D sur le schéma) : le point de l'ellipse le plus rapproché de la Terre est le périgée et le point le plus éloigné est l'apogée.
    Si la vitesse dépasse 11 kilomètres par seconde (cas E), le satellite échappe à l'attraction terrestre : c'est la vitesse de libération de la Terre qu'il est nécessaire de communiquer à une sonde spatiale pour qu'elle puisse être envoyée vers d'autres planètes du Système solaire.

    La vitesse de satellisation minimale est proportionnelle à la gravité - et donc à la masse - du corps céleste autour duquel le satellite doit orbiter : un objet qui décolle du sol lunaire a besoin d'une vitesse horizontale beaucoup plus faible pour être satellisé (4 fois plus faible que la Terre : 1,7 km/s).


    Vitesse injection.png

    Les trois lois de Kepler
    La trajectoire d'un satellite artificiel ou naturel est régie par les 3 lois formulées par Kepler s'appliquant au déplacement d'un objet gravitant autour d'un corps céleste :

    La trajectoire d'un satellite artificiel ou naturel est régie par les 3 lois formulées par Kepler s'appliquant au déplacement d'un objet gravitant autour d'un corps céleste :




      • loi I : l’orbite du satellite a la forme d’une ellipse dont un des deux foyers se trouve au centre du corps céleste (par exemple la Terre) autour duquel il gravite ; une orbite circulaire est un cas particulier de l’ellipse dont les deux foyers sont confondus au centre de la Terre. La forme de l'ellipse peut être définie par :



      • la distance rp du point de l'orbite le plus proche de la Terre (le périgée) au centre de la Terre,
      • la distance ra du point de l'orbite le plus éloigné de la Terre (l'apogée) au centre de la Terre,
    On utilise généralement à la place :



      • le demi-axe a défini par la formule 2a = rp + ra,
      • l'excentricité e qui définit l'allongement de l'ellipse et peut être calculée par la formule e = 1-rp/a. Elle prend une valeur comprise entre 0 et 1 : 0 correspond à une orbite circulaire et plus la valeur est proche de 1 plus l'orbite est allongée ;



      • loi II : le satellite se déplace d’autant plus vite qu’il est proche du corps céleste ; plus précisément la droite qui joint le centre du corps céleste au satellite balaie toujours une aire égale dans un intervalle de temps donné ;



      • loi III : le carré de la période de rotation du satellite autour du corps céleste varie comme le cube de la longueur du grand axe de l’ellipse. Si l’orbite est circulaire, le grand axe est alors le rayon du cercle.
    [​IMG]

    La Terre se trouve à l'emplacement d'un foyer de l'orbite elliptique du satellite

    dont la vitesse croît d'autant plus que la Terre est proche.

    Description : Animation montrant le mouvement d'un petit corps (vert)
    dans une orbite elliptique autour d'un corps beaucoup plus massive (en bleu).

    Date : Created 7. Mar. 2006.

    Auteur : Brandir

    Autorisation : Brandir put it under the GFCL and the CC-BY-SA

    Ce fichier est disponible selon les termes de la licence


    _________________________
    Période et vitesse orbitale d'un satellite artificiel terrestre


    Les lois de Kepler permettent de calculer à partir des caractéristiques de son orbite la période orbitale qui est l'intervalle de temps compris entre deux passages consécutifs d'un satellite par un point de son orbite, ainsi que la vitesse orbitale qui correspond à la vitesse du satellite par rapport au centre de la planète (le référentiel utilisé garde une orientation fixe dans l'espace) :

    Période orbitale P du satellite (en secondes)

    [​IMG]
    [​IMG]
    (Paramètre gravitationnel standard pour la Terre)





      • pour une orbite elliptique de 36 000 km sur 200 km le demi-axe a est égal à 24 478 km et la période P est d'environ 38 113 secondes ;



      • la formule fonctionne également pour une orbite circulaire a, étant alors remplacé par le rayon de l'orbite. Pour une orbite de 200 km le rayon est égal à 6 578 km (arrondi) ce qui donne une périodicité de 5 310 secondes soit environ 89 minutes ;



      • la période augmente au fur et à mesure que l'orbite s'élève.



      • un satellite en orbite géostationnaire, c'est-à-dire qui semble rester immobile à la verticale de l'équateur, a une période égale à 24 heures.
    type orbite.png
    Vitesse à l'apogée et au périgée

    [​IMG]
    • pour une orbite elliptique de 36 000 km sur 200 km, ra = 36 000 + 6 378 (rayon de la Terre) km et la formule permet de calculer que la vitesse à l'apogée est de 1,59 km/s ;
    • la formule est la même pour le périgée (on remplace ra par rp). On obtient dans le cas ci-dessus une vitesse de 10,24 km/s ;
    • pour une orbite circulaire la vitesse est constante (on remplace ra par le rayon de l'orbite). Pour une orbite de 200 km, la vitesse est égale à 7,784 km/s.
    • un satellite en orbite géostationnaire, c'est-à-dire qui semble rester immobile à la verticale de l'équateur, a une vitesse d'environ 3 km/s.
    • Il ne faut pas confondre cette vitesse avec celle qu'il est nécessaire d'imprimer au satellite pour atteindre son orbite : cette dernière est en partie transformée en énergie potentielle gravitationnelle.

    ..........
     
    Dernière édition: 14 Décembre 2013
  10. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Satellite artificiel
    ________________________________________________



    Les paramètres de l'orbite d'un satellite


    Six paramètres sont utilisés pour fournir la position et la trajectoire d'un satellite dans l'espace :

    • l'orbite d'un satellite est un plan. Si on ne tient pas compte des perturbations naturelles auxquelles elle est soumise et en l'absence de manœuvres du satellite, le plan d'orbite est fixe dans l'espace. Ce plan peut être défini par deux paramètres : l'inclinaison i et la longitude (ou ascension droite) du nœud ascendant ;
    • trois paramètres – l'excentricité e et le demi-grand axe a de l'ellipse ainsi que l'argument du périgée ω – permettent de décrire la trajectoire en forme d'ellipse dans le plan d'orbite ;
    • un dernier paramètre permet de situer le satellite sur son orbite : on peut par exemple prendre le temps t écoulé depuis le passage au périgée.
    - Plans et droites de référence
    Les paramètres de l'orbite sont définis dans un référentiel constitué de plusieurs plans et de droites :

    • la trajectoire de la Terre autour du Soleil s'inscrit dans un plan, dit plan de l'écliptique, passant par le centre du Soleil ;
    • le plan de l'équateur terrestre est le plan passant à la latitude de l'équateur ;
    • à l'équinoxe de printemps le 21 mars le plan de l'équateur terrestre coupe le plan de l'écliptique selon une ligne dite ligne des équinoxes passant par le Soleil. Cette droite qui désigne à l'infini le point vernal γ est fixe dans le Système solaire ;
    • l'orbite d'un satellite coupe le plan de l'équateur en deux points appelés nœud ascendant lorsque le satellite passe de l'hémisphère sud à l'hémisphère nord et nœud descendant. La ligne reliant les deux points est appelée ligne des nœuds.
    - L'orientation du plan de l'orbite
    L'inclinaison i du plan de l'orbite du satellite (entre 0 et 180 degrés) est l'angle que fait le plan de l'orbite avec le plan de l'équateur. Lorsque i = 90° l'orbite du satellite survole les pôles (orbite polaire) ; si i = 0 le plan de l'orbite se situe dans le plan de l'équateur. L'orbite est dite directe lorsque i est inférieur à 90° et rétrograde sinon.
    La longitude du nœud ascendant (ou ascension droite du nœud ascendant) est l'angle entre la direction du point vernal et la ligne des nœuds, dans le plan de l'écliptique. Si le plan de l'orbite coïncide avec la droite des équinoxes la longitude du nœud ascendant est nulle.

    - Les caractéristiques de la trajectoire dans le plan d'orbite
    Dans le plan défini par les paramètres précédents, l'orbite est décrite par trois paramètres. La forme de l'ellipse que parcourt le satellite est fournie par deux informations :

    L'argument du périgée ω est l'angle formé par la ligne des nœuds et la direction du périgée (la droite passant par la Terre et le périgée de la trajectoire du satellite), dans le plan orbital. La longitude du périgée est la somme de la longitude du nœud ascendant et de l'argument du périgée.

    - La position du satellite sur son orbite
    La position du satellite sur sa trajectoire peut être fournie de deux manières :

    • en spécifiant le temps t écoulé depuis son passage au périgée. t = 0 indique que le satellite est à son périgée ;
    • en indiquant l'angle ν (dit anomalie vraie) formé par les droites allant du centre de la Terre vers d'une part le périgée et d'autre part la position du satellite. ν = 0° indique que le satellite se trouve à son périgée.

    Les perturbations naturelles de l'orbite

    La trajectoire d'un satellite artificiel autour d'un corps céleste n'est pas complètement stable. Elle est modifiée par plusieurs phénomènes naturels dont l'influence est variable selon le corps céleste et la position du satellite. Si celui-ci tourne autour de la Terre, les phénomènes perturbateurs sont dans l'ordre décroissant d'influence :


    - L'aplatissement du corps céleste à ses pôles

    La Terre n'a pas une forme parfaitement sphérique : ses pôles sont légèrement aplatis tandis l'équateur présente un renflement. Ces déformations induisent des modifications du plan de l’orbite. Ce mouvement, la précession nodale, est d'autant plus important que l'inclinaison de l'orbite est différente de 90° et proche de la Terre.
    Cette perturbation, la plus importante que subit le satellite, modifie à la fois l'ascension droite du nœud ascendant et l'argument du périgée ω. Pour maintenir l'orbite, il est nécessaire de consommer beaucoup de carburant. Aussi les satellites en orbite basse, plutôt que de les corriger, soit exploitent les modifications d'orbite induites (satellite en orbite héliosynchrone) soit sont placés sur des orbites ayant des inclinaisons pour lesquels cette perturbation est nulle (i = 90° et 63° 26').

    - Les autres irrégularités du champ de gravité
    Le champ de gravité terrestre présente d'autres irrégularités que celles dues aux déformations au pôle et à l'équateur : elles sont liées à des variations de densité (réplétions) du sous-sol terrestre (croûte et manteau). Celles-ci sont particulièrement nombreuses sur la Lune. Pour les satellites terrestres les variations du champ de gravité finissent par perturber l'orbite avec un ordre de grandeur beaucoup moins important que celui dû à l'aplatissement du globe terrestre.

    - La résistance de l'atmosphère
    Si le corps céleste autour duquel gravite le satellite possède une atmosphère (Terre, Mars, Vénus) celle-ci exerce une force de traînée proportionnelle à la vitesse du satellite et à la densité de l'atmosphère : la vitesse du satellite est progressivement réduite. Si l'orbite est elliptique le premier effet de la résistance de l'atmosphère est de la rendre circulaire (l'apogée est modifiée et le périgée reste invariant) puis l'orbite circulaire est elle-même progressivement abaissée. Le satellite finit par être détruit en rentrant dans les couches les plus denses de l'atmosphère. Dans le cas d'un satellite tournant autour de la Terre sur une orbite circulaire sa durée de vie moyenne est égale à (compte tenu de l'impact d'un vent solaire moyen détaillé plus loin) :

    • quelques jours pour une orbite de 200 km ;
    • quelques semaines à 300 km ;
    • quelques années à 600 km ;
    • un siècle à 800 km (c'est l'orbite des satellites de télédétection, comme la famille Spot) ;
    • plusieurs siècles à 1 000 km (ce sont les orbites des constellations des satellites de télécommunications, comme Globalstar et Iridium) ;
    • un million d'années à 36 000 km (ce sont les satellites géostationnaires, ou ceux qui ont terminé leur service opérationnel et ont été désorbités, vers une orbite de rebut).
    L'orbite des satellites artificiels circulant sur une orbite basse est généralement maintenue au-dessus de 300 km pour que leur durée de vie ne soit pas trop brève. Pour certaines applications (satellite de renseignement, application scientifique), une orbite plus basse peut être choisie de manière temporaire ou permanente pour améliorer la précision de l'observation : le satellite doit alors emporter une grande quantité de carburant pour conserver cette orbite sinon sa durée de vie est particulièrement brève. Les satellites espions américains Keyhole 9 construits dans les années 1980 pouvaient ainsi descendre à une altitude de 118 km. On peut réduire la traînée des satellites orbitant à basse altitude en leur donnant une forme aérodynamique comme dans le cas du satellite GOCE qui, pour affiner notre connaissance du champ de gravité, parcourt une orbite circulaire de 250 km.
    Le vent solaire, qui est un flux de plasma constitué essentiellement d'ions et d'électrons éjectés de la haute atmosphère du Soleil, peut augmenter temporairement la traînée. Ce flux varie en vitesse et en température au cours du temps en fonction de l'activité solaire. Celle-ci suit un cycle de 11 ans. Lors des éruptions solaires le réchauffement de l’ionosphère entraîne la dilatation vers le haut des couches supérieures de l'atmosphère. Entre 300 et 500 km la densité peut être multipliée par 10: la force de traînée augmente en proportion et certains satellites peuvent ainsi perdre plus de 10 km en quelques jours. Ces effets sont particulièrement gênants pour les satellites d’observation de la Terre tels que Spot, dont la position doit être connue avec une grande précision.

    - L'attraction de la Lune et du Soleil
    Les deux astres ont une influence sur la trajectoire d'un satellite artificiel. Le Soleil malgré sa taille a une influence plus faible que la Lune du fait de son éloignement. La perturbation est d'autant plus forte que l'altitude de l'apogée est élevée : elle est nulle pour les satellites en orbite basse et faible pour les satellites géostationnaires.

    - La pression de radiation
    Les photons émis par le Soleil exercent une pression faible — de l'ordre de 10[SUP]-5[/SUP] Pa autour de la Terre — mais continue sur les objets qu'ils rencontrent. La force exercée est proportionnelle à la surface exposée (l'incidence et le caractère réfléchissant de la surface exposée ont une incidence sur cette force).

    Les différents types d'orbite des satellites artificiels terrestres


    Les orbites des satellites terrestres peuvent avoir de nombreuses formes et orientations : certaines sont circulaires ou au contraire en forme d'ellipse très allongée. Elles peuvent se situer à basse altitude juste au-dessus de l'atmosphère terrestre (250 km) ou dépasser 30 000 km. L'orbite d'un satellite artificiel est choisie pour répondre au mieux aux besoins de la mission. La plupart des satellites utilisent un des quatre types d'orbite suivants :

    • l’orbite géostationnaire (ou de Clarke) est une orbite circulaire située dans le plan de l'équateur à une altitude de 35 786 km du sol (le rayon de l'orbite est donc de 42 164 km). À cette altitude la période de révolution du satellite correspond exactement à la période de rotation de la Terre, soit 23 heures, 56 minutes et 4 secondes. Vu de la Terre, un satellite géostationnaire semble immobile dans le ciel : c’est l’orbite parfaite pour les satellites de télécommunications et pour certains satellites d’observation (météo) qui doivent couvrir une zone fixe. Trois satellites géostationnaires suffisent pour l'ensemble de la surface du globe terrestre. La mise à poste d'un satellite géostationnaire nécessite, du fait de l'altitude, un lanceur puissant. Pour les télécommunications la distance franchie par un signal transitant par ce type de satellite crée un délai perceptible par un usager. Les satellites de télécommunications qui ne suivent pas ce type d'orbite sont appelés satellites à défilement ;

    • l’orbite polaire est une orbite circulaire basse (par convention entre 300 et 1 000 km d’altitude) dont l'inclinaison, proche de 90°, la fait passer au-dessus ou près des pôles. Un satellite situé sur une orbite polaire passe régulièrement au-dessus de tous les points de la surface grâce à la rotation de la Terre. Les orbites polaires sont généralement des orbites héliosynchrones : ce type d'orbite conserve un angle constant avec la direction Terre-Soleil c'est-à-dire que le plan d'orbite tourne de 360° par an. Les orbites héliosynchrones permettent de passer toujours à la même heure solaire locale au-dessus d'un lieu donné : l'éclairage identique des prises de photo du lieu permet de faire ressortir les changements. Cette caractéristique en fait une orbite idéale pour des satellites d’observation de la Terre. La rotation du plan d'orbite se fait naturellement en utilisant les perturbations de l'orbite générées par l'aplatissement du globe terrestre. L'orbite midi/minuit est un cas particulier d'orbite héliosynchrone où l'heure solaire fixe de passage est aux environs de midi ou minuit pour les longitudes équatoriales. L'orbite crépusculaire, d'une manière similaire, est une orbite héliosynchrone dont l'heure solaire fixe de passage coïncide avec le lever ou le coucher du Soleil ;

    [​IMG]
    Description : Les grandes catégories d'orbite des satellites artificiels de la Terre.
    Schéma à l'échelle

    Date : Avril 2009
    Source : Orbitalaltitudes.jpg
    Auteur : Pline
    Ce fichier est sous licence Creative Commons
    Paternité – Partage des conditions initiales à l’identique 3.0 Unported,
    2.5 Générique, 2.0 Générique et 1.0 Générique.

    _____________________


    • l'orbite basse se situe juste au-dessus de l'atmosphère terrestre à une altitude où la traînée ne freine pas trop la vitesse du satellite (par convention l'orbite basse se situe à une altitude inférieure à 2 000 km). Une fusée a besoin de moins de puissance pour placer un satellite sur ce type d'orbite. Elle est utilisée par les satellites scientifiques qui explorent l'espace lointain. Le télescope Hubble, par exemple se situe sur une orbite de 610 km. On trouve également sur ce type d'orbite les satellites de radioamateur et les constellations de téléphonie mobile ou de télédétection terrestre, telle que l'A-train ;

    • l'orbite moyenne culmine généralement à une altitude de 20 000 km avec une période de 12 heures. L'orbite située en dehors de l'atmosphère terrestre est très stable. Les signaux envoyés par le satellite peuvent être reçus sur une grande partie de la surface du globe terrestre. C'est l'altitude retenue pour les satellites de navigation comme le système GPS. Un peu plus bas, à 8,063 km, est prévue la constellation de satellites O3b pour la distribution d'Internet.

    • L'orbite haute a un apogée qui se situe à une altitude supérieure à l'orbite géostationnaire. La Russie utilise ce type d'orbite pour certains de ses satellites de télécommunications : l'orbite de Molniya se caractérise par une orbite très excentrique avec un apogée de 40 000 km pour un périgée de 500 km. L’inclinaison de 63,4° permet d'échapper aux perturbations d'orbite découlant de l'aplatissement du globe. L'orbite de Molniya permet une couverture 24h sur 24 du territoire de la Russie avec une constellation de trois satellites. Cette orbite est utilisée car la Russie ne peut lancer de satellites géostationnaires depuis ses bases spatiales toutes situées à des latitudes trop élevées et les satellites géostationnaires ne peuvent pas couvrir la fraction du territoire russe située à une latitude supérieure à 81°.

    • Les orbites autour des points de Lagrange constituent une catégorie à part. Un point de Lagrange est une position de l'espace où les champs de gravité de deux corps célestes se combinent de manière à fournir un point d'équilibre à un troisième corps de masse négligeable, tel que les positions relatives des trois corps soient fixes. Le système Terre-Soleil dispose de 5 points de Lagrange dont 2 (L1 et L2) se trouvent à relativement faible distance de la Terre (1,5 million de kilomètres). Un satellite positionné à un de ces points a besoin de très peu d'énergie pour se maintenir à poste et contrôler son orientation. L2, situé à l'opposé du Soleil par rapport à la Terre, permet d'observer les étoiles lointaines sans être perturbé par une lumière parasite. Plusieurs télescopes spatiaux ont été ou vont être positionnés près de L2 dont Planck et Herschel en 2009, Gaia en 2013 et le télescope spatial James-Webb en 2013.
    La trace au sol

    La trace au sol d'un satellite est la projection au sol de sa trajectoire selon une verticale qui passe par le centre du corps céleste autour duquel il tourne. Sa forme détermine les portions de surface balayées par les instruments du satellite et les créneaux de visibilité du satellite par les stations terrestres.
    Le dessin de la trace résulte à la fois du déplacement du satellite sur son orbite et de la rotation de la Terre. Cette dernière entraîne une déformation vers l'ouest de la trace par rapport à la trajectoire :

    • lorsque l'orbite est circulaire, la déformation est d'autant plus forte que l'orbite est haute. Dans le cas particulier d'un satellite géostationnaire la trace se réduit à un point ;
    • un satellite non géostationnaire dont l'orbite est circulaire et parallèle à l'équateur (inclinaison=0°) aurait une trace droite dont la longueur dépend de son altitude ;
    • lorsque l'orbite est elliptique la trace est particulièrement décalée si le satellite est proche de son périgée. La déformation diminue lorsque le satellite survole des latitudes élevées pour devenir nulle s'il survole les pôles (vitesse de rotation de la Terre nulle en ce lieu) ;
    • l'inclinaison i de l'orbite détermine les latitudes entre lesquelles évolue la trace : plus l'inclinaison est forte plus les latitudes balayées par la trace sont importantes ;
    • un satellite dont l'orbite est directe recoupe des méridiens de plus en plus orientaux si la composante est-ouest de sa vitesse angulaire est supérieure à 15° 2' 30' et dans le cas inverse (orbite rétrograde) recoupe des méridiens de plus en plus occidentaux ;
    • dans le cas des satellites d'observation héliosynchrones ce décalage de la trace joue un rôle important dans la prise d'images, puisqu'il est souvent demandé à ces satellites d'observer le même lieu à des intervalles rapprochés. La fréquence de passage au-dessus d'un point du globe est donc une caractéristique de l'orbite du satellite. Les satellites Spot balayent ainsi les mêmes lieux tous les cinq jours.

    ..........
     
  11. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Satellite artificiel
    ________________________________________________


    Historique

    Les précurseurs

    La première mention d'un satellite artificiel figure dans la nouvelle The Brick Moon de Edward Everett Hale (1869). Jules Verne évoque également cette idée dans Les 500 millions de la Bégum (1879). En 1903, Constantin Tsiolkovsky (1857–1935) publie Исследование мировых пространств реактивными приборами («Exploration de l'espace au moyen d'engins à réaction»), qui constitue le premier ouvrage scientifique sur l'utilisation de fusées pour le lancement des engins spatiaux. Dans cet ouvrage il indique la vitesse minimale que doit atteindre un objet pour qu'il se place en orbite autour de la Terre (8 km/s) et préconise l'utilisation d'une fusée à plusieurs étages avec des moteurs à propergols liquides.
    En 1928, le Slovène Herman Potočnik (1892–1929) dans son unique ouvrage Das Problem der Befahrung des Weltraums («La Problématique du vol spatial») décrit les moyens à mettre en œuvre pour permettre à l'homme de s'établir de manière permanente dans l'espace. Il décrit comment des vaisseaux spatiaux placés en orbite peuvent être utilisés pour des observations pacifiques et militaires de la surface de la Terre ; il montre l'intérêt de l'apesanteur pour les expériences scientifiques. Le livre décrit le fonctionnement des satellites géostationnaires (évoqués pour la première fois par Tsiolkovsky) et explore le problème des communications entre le sol et les satellites par le biais de la radio. Mais l'ouvrage n'évoque jamais l'utilisation des satellites pour relayer les télécommunications et comme système de radiodiffusion.
    En 1945, l'écrivain de science-fiction Arthur C. Clarke (1917-2008) décrit en détail l'utilisation de satellites de télécommunications pour les communications de masse. Clarke passe en revue les contraintes logistiques d'un lancement de satellite, les orbites possibles ainsi que d'autres aspects permettant la création d'un réseau de satellites couvrant le globe en mettant en avant les avantages de disposer d'un système de télécommunications planétaire. Il suggère également l'utilisation de trois satellites en orbite géostationnaire, nombre suffisant pour couvrir l'ensemble de la planète.

    Les premiers satellites

    Le premier satellite artificiel Spoutnik I est lancé par l'URSS le 4 octobre 1957 et constitue le point de départ de la course à l'espace entre l'URSS et les États-Unis. Spoutnik 2, lancé le 3 novembre 1957 place en orbite pour la première fois une créature vivante, la chienne Laïka. Les États-Unis, dont le programme spatial avait pris du retard, placent en orbite leur premier satellite (Explorer I) le 31 janvier 1958. En juin 1961, 3 ans et demi après Spoutnik 1, l'US Air Force détectait près de 115 satellites en orbite autour de la Terre. Les premiers satellites sont utilisés pour des études scientifiques. Les variations de l'orbite de Spoutnik 1 permettent de mieux connaître la densité des couches atmosphériques supérieures.

    Premier satellite mis en orbite par un lanceur national
    PREMIER SATELLITE.JPG

    La multiplication des domaines d'application
    Les satellites d'observation militaire apparaissent dès le début de la conquête spatiale : ce sont les satellites américains de la série Corona (premier lancement en juin 1959) qui permettent d'observer les installations militaires russes que les batteries anti-aériennes protègent de mieux en mieux des avions espions. Très complexes (les photos prises sont envoyées sur Terre dans une capsule qui doit être récupérée en vol), il ne faudra pas moins de 20 lancements avant d'obtenir le premier vol réussi. Le premier satellite d'alerte avancée destiné à détecter le lancement d'un missile stratégique est le Midas américain dont le premier vol réussi remonte à mai 1960.

    TIROS-1, lancé le 1[SUP]er[/SUP] avril 1960, inaugure les satellites destinés à l'observation météorologique. Le satellite américain Landsat-1, lancé le 23 juillet 1972, est le premier satellite affecté à l'observation de la Terre et plus particulièrement à l'évaluation des récoltes céréalières. Le satellite GEOS-3 lancé le 9 avril 1975 inaugure l'utilisation d'un radar depuis l'espace. Lancé le 30 mai 1971, le satellite Mariner 9 est le premier satellite mis en orbite autour d'une autre planète (Mars). Le télescope spatial Hubble, lancé en 1990, est le premier observatoire de cette dimension mis en orbite.


    Les satellites de télécommunications première application commerciale
    En 1960, le premier satellite de télécommunications Echo est placé en orbite basse. C'est un satellite passif qui se contente de renvoyer les signaux contrairement à Telstar 1 mis en orbite 1962 qui les amplifie : pour recevoir le signal de ce dernier il faut malgré tout une antenne de plusieurs dizaines de mètres. À l'époque, seuls les États-Unis maîtrisent la technologie permettant de créer un système de télécommunications spatial. L'organisation Intelsat est mise en place pour rentabiliser l'investissement américain en faisant bénéficier ses adhérents de la prestation américaine en échange de leur contribution.

    Le satellite Early Bird (1965), lancé pour le compte d'Intelsat, est le premier satellite de télécommunications placé en orbite géostationnaire. La capacité des satellites de télécommunications, limitée initialement à 300 circuits téléphoniques va augmenter en profitant des progrès de l'électronique pour atteindre 200 000 circuits à la fin du XX[SUP]e[/SUP] siècle.


    Les satellites Symphonie (1974-1975), fruits d'une coopération franco-allemande, sont les premiers satellites de télécommunications réalisés en Europe. Plusieurs innovations sont introduites : la stabilisation trois-axes en orbite géostationnaire et le recours à un système de propulsion biergol pour la manœuvre de circularisation géosynchrone et le maintien à poste.


    Des opérateurs internationaux (Inmarsat affecté aux communications maritimes, Interspoutnik pour les pays de l'Est), régionaux (Eutelsat opérateur européen, Arabsat…), nationaux et privés (Astra) sont créés dans les années 1970-1980 pour mutualiser les moyens nécessaires à la mise en place de réseaux de satellites dédiés tandis qu'Intelsat assure une couverture mondiale. La Russie handicapée à la fois par la latitude de ses bases de lancement et celle d'une grande partie du pays n'adopte pas le système des satellites géostationnaires qui s'est généralisé mais met en place un système reposant sur des satellites en orbite moyenne fortement elliptique.


    Dans les années 1990-2000 la rentabilité de l'activité, qui s'est diversifiée (télévision directe, Internet, messagerie), s'accroît fortement : en conséquence les organisations internationales (Intelsat) et régionales (Eutelsat) sont progressivement privatisées tandis que les opérateurs privés se multiplient. L'activité fait partie des secteurs les plus touchés par la bulle Internet de la fin des années 1990 : plusieurs opérateurs mettent en place des projets de constellations (de 10 à 70 satellites) en orbite basse (Iridium, Globalstar, …) pour lancer entre autres la téléphonie par satellite. Mais la rentabilité n'est pas au rendez-vous et les projets sont arrêtés ou leurs objectifs sont revus à la baisse.

    Les trois quart des revenus proviennent aujourd'hui de la télévision par satellite en pleine expansion sur tous les continents.


    ..........
     
    Dernière édition: 19 Janvier 2016
  12. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Satellite artificiel
    ________________________________________________



    Domaines d'utilisation


    Les satellites sont divisés en deux catégories :

    *les satellites d'application, les plus nombreux, sont mis en œuvre pour prendre en charge les télécommunications sur de vastes territoires et observer la Terre (observation, géo-positionnement, télédétection, reconnaissance militaire). Leur service ne devant pas s'interrompre, ils nécessitent des redondances en orbite et des remplacements par de nouvelles générations ;

    *les satellites scientifiques ont un éventail très vaste de missions allant de l'étude de l'espace lointain grâce à des télescopes spatiaux jusqu'à l'étude du milieu spatial.

    Les atouts du satellite

    Une grande partie du spectre électromagnétique est filtrée par l'atmosphère terrestre et ne parvient pas jusqu'au sol ; seuls des télescopes montés sur des satellites permettent d'étudier les rayonnements gamma et X riches en informations cosmologiques mais qui sont complètement absorbés par l'ionosphère. Une partie du rayonnement ultraviolet est interceptée par l'ozone tandis que le rayonnement infrarouge est absorbé par la vapeur d'eau et le gaz carbonique contenu dans l'atmosphère. Dans le domaine du rayonnement visible, le télescope spatial s'affranchit des perturbations atmosphériques et de la pollution lumineuse auxquels sont confrontés les télescopes terrestres.

    Le satellite est dans une position idéale pour observer la Terre. Placé sur une trajectoire adaptée, il dispose d'un champ d'observation qui peut embrasser un hémisphère terrestre entier ; il peut également avec des instruments récents descendre à une résolution de quelques décimètres. Il est capable de photographier périodiquement à la même heure solaire une zone de la surface terrestre avec une régularité de métronome permettant de mettre en évidence rapidement les changements intervenus.

    Dans le domaine des télécommunications un seul satellite peut assurer le relais entre des stations dispersées sur un continent entier ou transmettre à partir de sa seule antenne des émissions télé ou radio à tous les récepteurs individuels de plusieurs pays : il remplace une infrastructure terrestre lourde très coûteuse et qui est susceptible d'être rapidement frappée par l'obsolescence technique. L'échec financier de la téléphonie par satellite, vaincue par les progrès du GSM, démontre que cet avantage n'est pas toujours décisif.
    Enfin un satellite est le meilleur moyen d'étudier les conditions régnant dans l'espace : flux de particules, champs électriques et magnétiques.

    Les satellites scientifiques

    Les satellites scientifiques regroupent les satellites affectés aux études scientifiques depuis l'espace. On retrouve dans cette catégorie les premiers satellites comme Spoutnik 1 dont les émissions radio ont permis d'étudier les couches atmosphériques supérieures. Les premières briques de l'Europe spatiale ont été posées à la demande des scientifiques qui sont à l'origine des organismes européens de l'ELDO et de l'ESRO.
    L'étude de la Terre et de l'espace proche

    On trouve dans cette catégorie des satellites dont les missions portent sur la géodésie (niveau des océans (TOPEX/Poséidon), la géodynamique (étude de la tectonique des plaques), la modélisation du fonctionnement de la biosphère (devenue un enjeu vital dans le cadre de la théorie du réchauffement climatique).

    - La recherche en physique fondamentale
    L'espace est également un lieu idéal pour vérifier certaines théories physiques dans lesquelles la gravité est en jeu : on peut citer la vérification du principe d'équivalence avec les satellites (Microscope) et STEP ou la recherche d'ondes gravitationnelles avec (Lisa).

    - Les satellites d'astronomie
    Les satellites d'astronomie, qui sont des télescopes en orbite, permettent d'observer l'espace lointain avec une résolution qui dépasse celles des observatoires terrestres les plus puissants (Hubble). Tout le spectre électromagnétique est aujourd'hui étudié par des télescopes spatiaux : rayonnement X (XMM-Newton), gamma (INTEGRAL), infrarouge (télescope ISO). La fin de la décennie 2000 est fertile en nouveaux instruments (pour l'Europe Herschel, Planck). L'absence d'atmosphère permet la détection d'exoplanètes situées dans des systèmes stellaires extérieurs (Corot).

    Les satellites de télécommunications

    Les satellites de télécommunications sont utilisés pour transmettre des informations d'un point à l'autre de la Terre, notamment les communications téléphoniques, la transmission de données (par exemple Thuraya), les communications par satellite et les programmes télévisés. C'est le seul domaine qui génère des revenus très supérieurs aux dépenses. Les clients sont des sociétés privées ou d'anciens organismes internationaux privatisés qui disposent généralement d'une flotte de satellites en orbite. Le domaine est le plus grand utilisateur de l'orbite géostationnaire.

    Les principales flottes de satellites de télécommunications sont celles :

    Les satellites dits de diffusion directe sont en forte progression depuis une dizaine d'années : ils émettent des bouquets de chaînes payants et cryptés, ainsi que des centaines de chaînes TV&Radio en clair et gratuites, qui peuvent être reçues sur une antenne, de type parabole, domestique de petite dimension (< 60 cm) et de faible prix, grâce à la forte puissance d'émission des satellites de diffusion.

    Les satellites d'observation

    Les satellites de télédétection observent la Terre, dans un but scientifique (température de la mer, manteau neigeux, sécheresse…), économique (ressources naturelles, agriculture…) ou militaire (rôle majeur dans les guerres contemporaines ; ils sont plus couramment désignés sous le nom de satellites-espion). Le spectre d'observation est vaste, optique, radar, infrarouge, ultraviolet, écoute de signaux radioélectriques. La résolution atteint actuellement moins d'un mètre pour certaines gammes de fréquence. Celle-ci dépend de la technologie employée mais aussi de l'altitude du satellite : une bonne résolution exige une orbite basse en général héliosynchrone utilisée par exemple par les satellites d'observation de la Terre de la famille SPOT. L'orbite géostationnaire, fixe, est préférée pour la surveillance permanente en temps réel comme dans le cas du programme de veille météorologique mondiale et ses familles de satellites météorologiques, dont l'européen METEOSAT.

    Les satellites radar peuvent analyser, par des techniques interférométriques, des variations de quelques millimètres de certaines structures. Ils sont utiles pour examiner les mouvements des plaques continentales, particulièrement avant ou après un séisme, ou les variations d'épaisseur de la banquise.

    Les satellites de localisation et de navigation

    Ces satellites permettent de connaître la position d'objets à la surface de la Terre, dans les airs (avions, missiles) et dans l'espace. Exemples : DORIS, le système américain GPS, le futur système européen Galileo, le système russe GLONASS.
    Dans cette catégorie, se situe également le système Argos de positionnement d'objets mobiles, datant de 1978 et emportés par les satellites météorologiques américains et l'européen MetOp.

    Les satellites militaires

    Les besoins des militaires sont à l'origine des premiers satellites d’observation : dès 1959, dans le cadre de la guerre froide, les États-Unis et l’URSS ont développé des satellites militaires d’observation, que l’on appelle couramment et abusivement «satellites-espions» (les premiers d’entre eux furent la série des Discoverer). Ils permettaient d'observer les ressources militaires de l’ennemi dans des zones peu accessibles.

    Aujourd'hui les conflits modernes y font largement appel et ne pourraient certainement plus s'en passer, employant différents types de satellites militaires :


    • les satellites de reconnaissance (par exemple Helios), qui utilisent les techniques optiques, infrarouges, radars pour obtenir des images des installations stratégiques (installations militaires, champs de bataille…). Ces satellites parfois dotés de capacités hors normes (résolution de quelques centimètres, capacité à descendre à basse altitude, masse de plus de 10 tonnes) ont contribué à défricher les techniques utilisées aujourd'hui par les satellites d'observation civile ;
    • les satellites de télécommunications utilisés pour les liaisons militaires généralement cryptées (par exemple satellites Syracuse) ;
    • les satellites d'écoute des télécommunications et des signaux radars qui déploient des antennes dont le diamètre pourrait atteindre plus de 100 mètres (satellites américains Mentor) ;
    • les satellites de suivi des flottes marines (RORSAT) qui repèrent les navires de guerre grâce aux émissions radar ;
    • les satellites d'alerte équipés de senseurs infrarouges (série des satellites américains DSP) permettant de détecter la chaleur émise par le lancement d'un missile balistique ;
    • les satellites de navigation utilisés dans le cadre des opérations militaires (constellation GPS avec un usage mixte civil/militaire) pour le guidage précis des missiles de croisière, des obus et le positionnement des unités de tous types;
    • les satellites de météorologie affectés aux missions militaires.



    ..........
     
  13. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Satellite artificiel
    ________________________________________________




    Fiche d'identité d'un satellite

    Un satellite est constitué de deux sous-ensembles :

    • la charge utile qui regroupe les instruments nécessaires pour remplir la mission : antennes et amplificateurs pour un satellite de télécommunications, instrument d'optique pour l'observation de la Terre, etc. ;
    • la plate-forme, ou module de service, qui supporte la charge utile et qui lui fournit les ressources dont elle a besoin pour son fonctionnement (électricité…), maintient le satellite sur son orbite selon l'orientation demandée et assure la liaison avec les stations à Terre.
    Les principales caractéristiques d'un satellite sont sa charge utile, sa masse, sa durée de vie opérationnelle, son orbite et sa plate-forme.

    Charge utile


    La charge utile est le sous-ensemble du satellite chargé de mener à bien sa mission. Elle varie en fonction du type de satellite :

    • Transpondeurs pour un satellite de télécommunications ;
    • Caméra ou radar pour un satellite d'observation ;
    • Télescope pour un satellite d'observation astronomique ;
    • etc.
    Masse

    La masse d'un satellite est un des principaux facteurs de coût : le lancement d'un kilogramme en orbite basse revient de 10 000 à 30 000 $/kg selon le lanceur utilisé (2004). Mais dans le domaine des télécommunications un satellite lourd dispose de capacités plus importantes — nombre de communications simultanées pour un satellite de télécommunications, nombre d'instruments embarqués pour un satellite scientifique — et d'une durée de vie allongée grâce à l'emport d'une plus grande quantité de carburant. Les satellites les plus massifs sont les satellites de télédétection, en orbite basse, qui peuvent atteindre 20 tonnes : des satellites de reconnaissance militaire (KH-11, 19,6 tonnes) ou civils (ENVISAT, 8 tonnes).
    La masse maximale des satellites (en particulier pour l'orbite géostationnaire) a longtemps été limitée par la capacité des lanceurs et elle a cru progressivement pour les besoins des télécommunications jusque dans les années 1990 :
    Selon le type de mission, la ventilation de la masse peut être très différente :

    [TABLE="class: MsoNormalTable"]
    [TR]
    [TD="colspan: 3"]
    Exemples de ventilation de masse de deux satellites
    [/TD]
    [/TR]
    [TR]
    [TD][/TD]
    [TD]
    Satellite d'observation
    Spot 4
    [/TD]
    [TD]
    Satellite géostationnaire
    durée de vie 15 ans

    [/TD]
    [/TR]
    [TR]
    [TD] Plate-forme[/TD]
    [TD]
    1 100 kg
    [/TD]
    [TD]
    1 620 kg
    [/TD]
    [/TR]
    [TR]
    [TD] Charge utile[/TD]
    [TD]
    1 060 kg
    [/TD]
    [TD]
    660 kg
    [/TD]
    [/TR]
    [TR]
    [TD] Total masse sèche[/TD]
    [TD]
    2 170 kg
    [/TD]
    [TD]
    2 280 kg
    [/TD]
    [/TR]
    [TR]
    [TD] Ergols[/TD]
    [TD]
    160 kg
    [/TD]
    [TD]
    2 780 kg
    [/TD]
    [/TR]
    [TR]
    [TD] Masse au lancement[/TD]
    [TD]
    2 330 kg
    [/TD]
    [TD]
    5 060 kg
    [/TD]
    [/TR]
    [/TABLE]

    La miniaturisation de l'électronique permet aujourd'hui de concevoir des satellites complets et dotés de fonctionnalités avancées pesant quelques dizaines de kilogrammes. Parmi les satellites légers on distingue :


    • les minisatellites (ou minisat) de quelques centaines de kg, telle la filière Proteus ;
    • les microsatellites (ou microsat) de 10 à 100 kg. Ils sont surtout utilisés pour des missions scientifiques ou d'observation (Parasol) ou pour valider des solutions techniques (SMART-1). Sous forme de constellation, ils peuvent remplir une mission qui serait normalement dévolue à un satellite de taille normale (Essaim). Un opérateur commercial de services de messagerie et de localisation (Orbcomm) a utilisé une constellation de satellites de 40 kg avec un succès mitigé du fait des capacités limitées des satellites ;
    • les nano satellites de quelques kg essentiellement utilisés comme démonstrateurs technologiques ou pour des expériences scientifiques limitées. Ce format est très prisé par les universités.

    Durée de vie


    La durée de vie d'un satellite est liée au type de mission. Un satellite de télécommunications récent (par exemple Hotbird 10 mis en orbite début 2009) est construit pour fonctionner une quinzaine d'années tandis qu'un satellite d'observation, comme ceux de la série Spot, est construit pour une durée de vie de 5 ans. La fin de vie d'un satellite est souvent liée à l'épuisement des ergols qui lui permettent de maintenir son orbite sur une trajectoire nominale et d'orienter ses instruments. Les autres équipements vulnérables sont les batteries qui, sur certains types de missions, peuvent être épuisées par des cycles de charge/décharge répétés et l'électronique. Le fonctionnement de certains satellites scientifiques (télescope infrarouge...) utilise de l'hélium liquide embarqué pour le refroidissement qui une fois épuisé entraîne l'arrêt de l'instrument.

    Les pannes peuvent être également à l'origine d'un arrêt total ou partiel du fonctionnement d'un satellite. Une étude effectuée sur les satellites géostationnaires pour la période 1965-1990 recense la défaillance totale de 13 satellites géostationnaires et 355 pannes partielles. Ces pannes touchent dans 39 % des cas la charge utile, 20 % le système de contrôle de l'orientation et de l'orbite, 9,6 % la propulsion, 9,3 % l'alimentation électrique et 9,2 % des composants mécaniques. Ces défaillances ont pour origine la conception (25 %), l'environnement (22 %) ou encore les composants (16 %).

    La plate-forme

    La plate-forme (bus en anglais), ou module de service regroupe tous les composants du satellite qui lui permettent de fonctionner. La composition relativement immuable de la plate-forme permet aux principaux fabricants de satellites de proposer des modèles standards correspondant aux missions les plus fréquentes :


    [TABLE="class: MsoNormalTable"]
    [TR]
    [TD="colspan: 8"]
    Principales plates-formes construites en série
    [/TD]
    [/TR]
    [TR]
    [TD]
    Constructeur
    [/TD]
    [TD]
    Désignation
    [/TD]
    [TD]
    Masse charge utile
    [/TD]
    [TD]
    Masse totale
    [/TD]
    [TD]
    Puissance électrique
    [/TD]
    [TD]
    Type d'orbite
    [/TD]
    [TD]
    Durée de vie
    [/TD]
    [TD]
    Particularités / remarques
    [/TD]
    [/TR]
    [TR]
    [TD] Boeing[/TD]
    [TD] Boeing 601[/TD]
    [TD] 48 ou 60
    transpondeurs
    [/TD]
    [TD] de 2,5 à 4,5 t[/TD]
    [TD] 4,8 kW
    10 kW (HP)
    [/TD]
    [TD] géostationnaire /
    moyenne
    [/TD]
    [TD][/TD]
    [TD] Moteur ionique (option)[/TD]
    [/TR]
    [TR]
    [TD] Boeing[/TD]
    [TD] Boeing 702[/TD]
    [TD][/TD]
    [TD] 4,5 - 6,5 t[/TD]
    [TD] 7-18 kW[/TD]
    [TD] géostationnaire[/TD]
    [TD] 7 ans[/TD]
    [TD] Moteur ionique[/TD]
    [/TR]
    [TR]
    [TD] Astrium[/TD]
    [TD] Eurostar E2000+[/TD]
    [TD] 550 kg[/TD]
    [TD] 3,4 t[/TD]
    [TD] 4-7 kW[/TD]
    [TD] géostationnaire[/TD]
    [TD] 12 ans[/TD]
    [TD][/TD]
    [/TR]
    [TR]
    [TD] Astrium[/TD]
    [TD] Eurostar E3000[/TD]
    [TD] 1 000 kg[/TD]
    [TD] 4,8 - 6,4 t[/TD]
    [TD] > 16 kW (C.U. de 4 à 14 kW)[/TD]
    [TD] géostationnaire[/TD]
    [TD] 15 ans[/TD]
    [TD] Propulsion électrique (option)[/TD]
    [/TR]
    [TR]
    [TD] OHB[/TD]
    [TD] Small Geo[/TD]
    [TD] 300 kg[/TD]
    [TD][/TD]
    [TD] 3 kW[/TD]
    [TD] géostationnaire[/TD]
    [TD] 15 ans[/TD]
    [TD] Propulsion électrique[/TD]
    [/TR]
    [TR]
    [TD] Thales Alenia Space (TAS)[/TD]
    [TD] Spacebus 3000[/TD]
    [TD][/TD]
    [TD] 2,5 - 5,2 t[/TD]
    [TD][/TD]
    [TD] géostationnaire[/TD]
    [TD] 15 ans[/TD]
    [TD][/TD]
    [/TR]
    [TR]
    [TD] Thales Alenia Space[/TD]
    [TD] Spacebus 4000[/TD]
    [TD][/TD]
    [TD] 4,0 - 5,9 t[/TD]
    [TD] jusqu'à 15,8 kW
    (C.U. jusqu'à 11,6 kW)
    [/TD]
    [TD] géostationnaire[/TD]
    [TD] 15 ans[/TD]
    [TD][/TD]
    [/TR]
    [TR]
    [TD] Astrium & TAS[/TD]
    [TD] Alphabus[/TD]
    [TD] 1 300 kg[/TD]
    [TD] 6,5 t[/TD]
    [TD] C.U. de 13 à 18 kW[/TD]
    [TD] géostationnaire[/TD]
    [TD] 15 ans[/TD]
    [TD] Propulsion électrique[/TD]
    [/TR]
    [TR]
    [TD] Astrium[/TD]
    [TD] AstroSat-1000[/TD]
    [TD][/TD]
    [TD] 900 kg [/TD]
    [TD] 1,4 kW[/TD]
    [TD] basse[/TD]
    [TD] 7 ans[/TD]
    [TD] Pléiades[/TD]
    [/TR]
    [TR]
    [TD] CNES/TAS[/TD]
    [TD] Proteus[/TD]
    [TD][/TD]
    [TD] 500 kg[/TD]
    [TD] 0,5 kW[/TD]
    [TD] basse[/TD]
    [TD] 5 ans[/TD]
    [TD] Jason, CALIPSO, SMOS[/TD]
    [/TR]
    [TR]
    [TD] CNES/Astrium-TAS[/TD]
    [TD] Myriade[/TD]
    [TD] 80 kg[/TD]
    [TD][/TD]
    [TD] 0,06 kW[/TD]
    [TD] basse[/TD]
    [TD] 2 ans[/TD]
    [TD] SPIRALE[/TD]
    [/TR]
    [/TABLE]

    Une plate-forme comporte plusieurs sous-ensembles :


    • la structure du satellite ;
    • le système de production de l'énergie ;
    • le système de contrôle thermique ;
    • le système de contrôle d'attitude et d'orbite (SCAO) ;
    • la gestion du bord qui pilote le fonctionnement du satellite ;
    • le système de propulsion.

    Un milieu spatial hostile
    La conception des satellites doit prendre en compte le caractère profondément hostile du milieu spatial. Les satellites croisent dans un vide presque absolu (10[SUP]-9[/SUP] Pa). À cette pression, les atomes superficiels des solides ont tendance à se sublimer et les mécanismes se bloquent. Des lubrifiants développés pour fonctionner dans le vide doivent être utilisés. Dans le vide l'énergie thermique, produite en abondance par l'électronique des satellites, ne peut être évacuée que par rayonnement. Les éruptions solaires et les rayons cosmiques génèrent des erreurs dans le traitement des données par l'électronique du satellite. Si l'orbite du satellite l'amène à traverser les ceintures de Van Allen (cas des satellites géostationnaires ou en orbite moyenne et haute), cela peut entraîner la dégradation des composants électroniques, des matériaux et des instruments optiques. Le plasma de particules crée un risque de décharge électrostatique source de panne. Le rayonnement solaire dégrade progressivement le silicium des panneaux solaires en diminuant leur rendement.

    La structure du satellite
    La tenue mécanique du satellite est assurée par sa structure. Celle-ci supporte les principaux sous-ensembles fonctionnels du satellite. Elle assure également l'interface mécanique avec le lanceur.
    La structure est dimensionnée pour faire face aux efforts mécaniques subis durant le vol propulsé. Le lancement de la fusée porteuse génère des vibrations importantes en provenance principalement des moteurs et des turbopompes qui sont transmises par le corps de la fusée au satellite et qui s'échelonnent dans des bandes de fréquence comprises entre 0 et 2000 hertz. Au décollage, le bruit atteint 150 décibels sous la coiffe qui abrite le satellite. Celui-ci subit également des accélérations et décélérations qui peuvent être particulièrement fortes lors de la séparation des étages, lorsque la coiffe est larguée et au moment de la séparation du lanceur et du satellite du fait de l'usage de charges pyrotechniques. Hormis ces chocs ponctuels, l'accélération la plus forte a lieu généralement durant la phase finale du vol propulsé (jusqu’à 4 ou 5 g). La structure doit être conçue pour résister à tous ces efforts tout en restant légère.

    La structure doit être conçue de manière à limiter les déformations découlant des grandes différences de température entre les différentes parties du satellite une fois celui-ci placé en orbite : les axes de visée des capteurs, antennes et instruments doivent rester pratiquement invariants pour que le satellite puisse remplir sa mission de manière nominale. Cette exigence est particulièrement importante pour les télescopes spatiaux (position relative des miroirs). Pour satisfaire cette contrainte la structure est réalisée avec des matériaux ayant un faible coefficient de dilatation tels que les composites en carbone.

    La production d'énergie
    Le satellite doit disposer d'énergie électrique pour le fonctionnement de la charge utile et de la plate-forme. Les besoins en énergie électrique varient en fonction de la taille des satellites et du type d'application. Les plus gourmands sont les satellites de télécommunications qui consomment énormément d'énergie en amplifiant les signaux reçus. Les satellites d'observation utilisant des radars ont besoin également de beaucoup d'énergie mais de manière irrégulière. Les satellites mettant en œuvre des instruments d'observation passifs (télescopes spatiaux...) sont les moins exigeants, la puissance nécessaire étant comprise entre 1 et 15 kW (en 2009), une valeur relativement basse, grâce au recours à une électronique basse puissance sophistiquée.

    La puissance électrique est généralement fournie par des panneaux solaires utilisant l'énergie solaire. Pour un satellite en orbite autour de la Terre, il faut en moyenne 40 m[SUP]2[/SUP] de panneaux solaires pour fournir 10 kW (l'envergure totale peut atteindre 40 mètres). L'orientation du satellite par rapport au Soleil est, du fait de sa trajectoire, constamment modifiée : les panneaux solaires doivent donc être réorientés en permanence pour que les rayons du Soleil les frappent à la perpendiculaire. Lorsque le satellite est en orbite géostationnaire ou héliosynchrone, il suffit que les panneaux puissent pivoter sur un seul axe, mais deux degrés de liberté sont nécessaires pour les autres orbites terrestres.

    Le satellite en orbite autour de la Terre peut se trouver sur sa trajectoire dans le cône d'ombre de la Terre. Le phénomène peu fréquent pour les satellites géostationnaires (deux fois par an aux équinoxes) représente un tiers du temps de parcours d'un satellite héliosynchrone. Durant les périodes d'obscurité, le satellite puise son énergie dans des batteries qui sont alimentées durant la phase éclairée. Les décharges fréquentes des batteries des satellites en orbite basse limitent la durée de vie de celles-ci et constituent une des principales limitations de la durée de vie de ce type de satellite (en général inférieure à 5 ans).

    Pour les satellites mis en orbite autour d'une planète lointaine du soleil, l'utilisation de cellules photovoltaïques devient impossible. On a recours alors, généralement, à l'électricité produite au moyen de générateur nucléaire, comme les générateurs thermoélectriques à radioisotopes (RTG). C'est le cas sur la sonde spatiale Cassini, devenue satellite artificiel de la planète Saturne, le 1[SUP]er[/SUP] juillet 2004, l'électricité étant fournie par trois RTG devant produire au moins 628 W au bout de 11 années de mission.

    Le système de contrôle thermique
    Le système de contrôle thermique doit maintenir la température des composants du satellite dans une plage de valeurs qui est souvent proche de celle rencontrée sur terre (environ 20 °C). Le satellite subit de fortes contraintes thermiques avec des écarts de température qui peuvent atteindre 200 °C entre la face éclairée par le Soleil et les faces tournées vers l'espace. Les équipements et instruments embarqués convertissent l'énergie électrique qu'ils utilisent en énergie thermique qu'il est nécessaire d'évacuer. Or, le vide ne permet pas de dissiper cette énergie par convection de l'air et l'énergie doit donc être évacuée par radiation, un processus de refroidissement moins efficace.

    Généralement le satellite est enveloppé dans plusieurs couches isolantes de kapton ou de mylar sur un support d'aluminium qui alternent avec des matériaux tels que la soie, le nomex ou le dacron. Cette couverture renvoie les rayonnements infrarouges et a une faible conductivité thermique. Les équipements qui produisent le plus de chaleur sont dans la mesure du possible installés sur des radiateurs tournés vers l'extérieur qui dissipent la chaleur grâce à leur forte émissivité dans l'infrarouge. La chaleur produite par les équipements situés à l'intérieur du satellite est évacuée par des caloducs vers des radiateurs montés sur les parois extérieures du satellite. Les antennes, panneaux solaires sont protégés sur le plan thermique par l'utilisation de matériaux et peintures isolantes.

    Lorsque les instruments et les équipements ne fonctionnent pas des résistances chauffantes permettent de maintenir la température dans les plages prévues. Il peut être nécessaire de maintenir certains instruments à une température très basse : par exemple les bolomètres embarqués sur le télescope spatial Planck doivent être maintenus à une température de 0,1 kelvin

    La gestion du bord
    La gestion du bord pilote le fonctionnement du satellite. Elle regroupe les sous-systèmes suivants :

    • la télémesure, la télécommande ;
    • la surveillance et le contrôle du satellite ;
    • le traitement des données.
    Le système de télécommande et de télémesure prend en charge le dialogue avec le sol. Les fonctions de télécommande (sol satellite) reçoivent et décodent les instructions ou données envoyées par le centre de contrôle et en assure la distribution aux autres sous-systèmes. Les fonctions de télémesures (satellite sol) recueillent les données du satellite portant sur le fonctionnement du satellite, les données issues des instruments et après compression les transmettent au centre de contrôle lorsque les stations sont en visibilité.

    Le système de contrôle du vol maintient la trajectoire et l'orientation du satellite. Ce système repose sur un logiciel qui utilise les données fournies par différents types de capteurs pour déterminer les écarts et effectue des corrections à l'aide d'actuateurs (orientation) et des moteurs généralement chimiques (trajectoire). Parmi les autres fonctions prises en charge par la gestion du bord :

    • la surveillance du fonctionnement du satellite, la détection des pannes éventuelles, la réalisation de diagnostics et l’activation de solutions de contournement ;
    • la vérification du respect des contraintes thermiques ;
    • la synchronisation temporelle des différents sous-systèmes ;
    • le déclenchement des taches programmées au niveau de la charge utile (prises d'image ciblées…).
    Une partie de ces fonctions peut être réalisée soit depuis les stations au sol soit confiée aux automatismes du satellite.
    Les données recueillies par les instruments sont stockées dans des mémoires de masse en attendant leur transfert vers les stations lors du survol d'une antenne de réception. Les communications internes du satellite sont réalisées via un bus. Le flux de données transmis doit être préservé des erreurs qui peuvent être provoquées par les particules chargées qui bombardent le satellite.

    Le système de propulsion
    Le système de propulsion du satellite remplit plusieurs missions:

    • il assure le transfert du satellite depuis son orbite d'injection vers son orbite définitive ;
    • dans le cas d'un satellite lancé vers une planète autre que la Terre, le système de propulsion peut également assurer l'injection sur une trajectoire interplanétaire.
    Une fois le satellite à poste :

    • il corrige les modifications de l'orbite induites par les perturbations naturelles (traînée atmosphérique, irrégularités du champ de gravité…) ;
    • il corrige l'attitude (orientation) du satellite si son maintien n'est pas réalisé par un autre dispositif ;
    • il permet les changements d'orbite prévus dans le cadre de la mission de certains satellites scientifiques.
    Compte tenu de la diversité des rôles assurés par la propulsion, il existe souvent deux types de moteurs fusées sur un satellite : l'un, plus puissant, prend en charge les manœuvres les plus importantes, l'autre plus précis mais de poussée plus faible intervient pour les corrections fines. Par ailleurs les satellites de télécommunications comportent généralement un moteur d'apogée dont le seul rôle est de fournir une vitesse de 1 500 m/s pour circulariser l'orbite à 36 000 km d'altitude lors de la mise à poste.

    La masse du système de propulsion (ergols, propulseurs, réservoirs…) varie beaucoup selon le type de satellite. Dans un satellite géostationnaire de télécommunications d'une durée de vie de 15 ans, le poids des ergols (sans le système propulsif lui-même) peut représenter plus de 50 % de la masse du satellite tandis que sur un satellite d'observation comme Spot 4 ces mêmes ergols représentent environ 7 % de la masse.
    Les poussées nécessaires varient de quelques millinewtons (actions de correction) à quelques centaines de newtons (Pour mémoire, 1 N permet de communiquer une accélération 1 m/s[SUP]2[/SUP] à une masse de 1 kg) si le transfert sur l'orbite définitive est pris en charge par le satellite. Quatre types de propulsion existent, caractérisés par des impulsions spécifiques (l'impulsion spécifique mesure l'efficacité d'un moteur-fusée : il fournit en secondes la durée durant laquelle 1 kilogramme de propergol produit une poussée de 1 kilogramme-force) et des poussées sensiblement différentes.

    Toutes ces technologies reposent sur l'éjection de matière à grande vitesse :


    • la propulsion à propergol solide fournit des poussées importantes. Son utilisation dans le domaine des faibles poussées est à l'étude. Ce type de moteur ne peut être rallumé. Elle est utilisée exclusivement pour l'injection sur l'orbite définitive ;
    • la propulsion à ergols liquides : la combustion d'un ou deux ergols (diergols) génère des gaz qui sont expulsés à haute vitesse. La poussée obtenue peut être faible ou relativement forte et couvrir tous les besoins ;
    • la propulsion à gaz froid : un gaz (généralement de l'azote) stocké dans des réservoirs à haute pression est détendu et expulsé avec une poussée pouvant atteindre quelques dizaines de newtons ;
    • la propulsion électrique utilise l'énergie électrique fournie généralement par les panneaux solaires. La poussée et l'impulsion sont faibles avec des valeurs qui dépendent de la technologie utilisée (électrothermique, électrostatique, plasma). Cette technologie est en plein développement car elle permet des gains de poids grâce à sa meilleure efficacité.
    Le contrôle de l'orientation
    Les instruments du satellite, pour pouvoir fonctionner correctement, doivent être en permanence pointés avec une bonne précision : les satellites de télécommunications doivent diriger leur antenne émettrice vers une portion du sol terrestre bien précise tandis que les appareils de prise de vues des satellites d'observation doivent cadrer les zones à photographier figurant dans leurs instructions : pour les instruments d'un satellite d'observation de la série Spot qui doivent être pointés avec une précision inférieure à 1 km et compte tenu de son altitude, comprise entre 500 et 1 000 km, l'erreur d'orientation du satellite doit être inférieure à 0,1°. De plus, pour éviter de déformer l'image obtenue, il faut que la vitesse angulaire du satellite soit inférieure à 0,005°/s.

    Or le satellite est soumis à des couples qui modifient son orientation : phénomènes naturels (pression de la radiation solaire, pression aérodynamique, couples créés par le champ magnétique ou le champ de gravité terrestre, etc.) ou résultant de déplacements de mécanismes du satellite (pointage d'instrument). Pour contrer les changements d'orientation (ou attitude) il existe plusieurs méthodes :


    • par gradient de gravité : une masse est reliée par un mât au satellite ; l'axe passant par le mat est aligné sur la direction satellite-centre de la Terre. Les mouvements autour de cet axe sont amortis sous l'influence de la gravité. Ce système passif a été utilisé par les premiers satellites mais il est délaissé aujourd'hui par la majorité d'entre eux car la précision de l'orientation n'est que de quelques degrés ;
    • en mettant le satellite en rotation autour de l'axe qui porte les instruments (le satellite est dit spinné). Le moment d'inertie créé limite les changements d'orientation. Ce système est encore utilisé en particulier par les satellites Météosat ;
    • les systèmes précédents ne permettent de stabiliser l'orientation que sur 2 axes. La stabilisation 3 axes est aujourd'hui la méthode de stabilisation la plus utilisée. Il existe plusieurs procédés. Celui reposant sur une roue cinétique est utilisé par les satellites géostationnaires. Le système le plus courant met en œuvre trois roues de réaction disposées selon les 3 axes du satellite et mises en mouvement grâce à l'énergie électrique fournie par les panneaux solaires. En augmentant ou diminuant la vitesse de la roue, on provoque un mouvement de rotation dans le sens inverse du satellite ce qui permet de corriger n'importe quelle erreur d'orientation. Si les corrections sont toujours effectuées dans le même sens la vitesse des roues a tendance à croître. Il faut alors «désaturer» (c'est-à-dire ralentir) la vitesse du volant ce qui peut être effectué à l'aide de barreaux magnétiques ou en utilisant les petits propulseurs du satellite. Une dernière méthode consiste à utiliser ces derniers mais le carburant consommé pour maintenir le satellite sur sa position raccourcit sa durée de vie. Aussi cette solution vient en complément lorsque la correction à apporter est importante par exemple à la suite d'un changement ou d'une correction d'orbite.
    • La pression de la radiation solaire est souvent utilisée pour limiter les changements d'orientation sur les satellites de télécommunications.
    Ces manœuvres sont déclenchées lorsque des modifications d'orientation supérieures à des valeurs fixées par le centre de contrôle sont détectées. L'orientation du satellite est déterminée en sommant tous les déplacements angulaires mesurés par des gyromètres placés sur les trois axes depuis que la dernière orientation correcte a été relevée. Les gyromètres et les accéléromètres accumulent à la longue des erreurs (dérive) et il faut recalculer (selon le cas toutes les quelques centaines de secondes, une fois par orbite) la position et l'orientation du satellite.
    Ce calcul est effectué en utilisant les données fournies par des capteurs qui utilisent comme repère, selon le satellite, le centre la Terre, le Soleil ou les étoiles les plus brillantes.



    ..........
     
  14. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Satellite artificiel
    ________________________________________________



    Cycle de vie d'un satellite


    De la définition de mission aux tests de qualification


    Le satellite est réalisé à la demande d'un client. Comme souvent dans un projet d'envergure, celui-ci délègue à un maître d'ouvrage spécialisé ses tâches dans les phases de conception, réalisation et qualification du satellite. La réalisation est prise en charge par un maître d'œuvre qui doit coordonner les travaux des industriels et des laboratoires participants ; leur nombre peut être particulièrement important quand il s'agit d'un satellite scientifique développé en coopération par plusieurs pays (60 industriels de 14 pays pour le satellite d'observation de la Terre ERS1).

    Le développement d'un satellite, en particulier lorsque sa mission est scientifique, peut-être un projet de longue haleine. Ainsi le début de la conception des deux sondes européennes BepiColombo, qui doivent être mises en orbite autour de Mercure en 2020, remonte à 2004 avec un lancement programmé en 2014. Il y a néanmoins une tendance au raccourcissement des phases de développement en particulier pour les satellites commerciaux qui font appel à des composants standards.


    - Les spécifications
    La définition de la mission est la première étape de la conception d'un satellite. Les exigences de la mission sont définies par le client : caractéristiques de la charge utile, durée de vie, disponibilité/fiabilité, débit des liaisons avec le sol ou encore compatibilité avec des systèmes existants. Les contraintes, dans lesquelles le projet doit s'inscrire, sont également précisées : coût, délais de réalisation, capacités du lanceur s'il est choisi par avance (masse admissible, encombrement, niveau de prestation en orbite), etc.

    La phase de spécifications comprend plusieurs étapes codifiées dans la norme européenne ECSS de conception des engins spatiaux : l'étude de faisabilité qui explore les concepts et affine le besoin, la définition préliminaire qui fige l'architecture et enfin la définition détaillée qui précise la méthode de qualification et produit les spécifications détaillées permettant de lancer la fabrication du modèle de vol. Les spécifications doivent non seulement porter sur les caractéristiques du satellite mais également sur celles des équipements au sol nécessaires pour assurer le suivi du satellite en poste et recueillir les données ainsi que sur les caractéristiques du lanceur si celui-ci n'est pas imposé. Le coût des installations au sol est loin d'être négligeable : dans le domaine des satellites de télécommunications les coûts en 1997 se répartissaient ainsi : satellites (26 %), lancement (21 %), installations au sol (15 %) et services (38 %) (location de canaux et transfert de données).

    Dans le cas d'un satellite scientifique, ces étapes sont souvent précédées d'une sélection qui vise à choisir parmi plusieurs propositions, le ou les projets répondant le mieux aux critères et contraintes définis par un comité de sélection : contribution scientifique, coût, faisabilité, risque, etc. En termes de planning, la contrainte la plus forte émane généralement de la conception de la charge utile, en particulier pour les satellites scientifiques. La démarche est par contre simplifiée lorsque le satellite fait partie d'une série (par exemple Spot).

    - La réalisation
    Un nombre variable de modèles plus ou moins proches du modèle final est fabriqué préalablement au satellite opérationnel (modèle de vol MV) pour valider les spécifications : modèle structurel et thermique (MSTH), modèle d'ingénierie et de qualification (MIQ)... Le modèle intermédiaire s'il est une copie conforme du modèle de vol, peut servir de modèle de remplacement (MR) en cas de défaillance du satellite ou être lancé pour assurer la poursuite de la mission en fin de vie du modèle de vol. Du fait de la réalisation de modèles intermédiaires, les phases de spécifications et de réalisation se superposent en partie.

    - Assemblage, Intégration et Tests (AIT)
    Souvent, charge utile et plate-forme sont réalisées en deux endroits différents. Un satellite comporte donc une activité technique essentielle : la réunion des deux modules (le mating en anglais), au sein d'un ensemble d'opérations d'assemblage, intégration et tests (AIT).

    La construction d'un satellite, chez un industriel spécialiste de cette discipline, nécessite des moyens très complexes, coûteux et, souvent, spectaculaires : salles blanches de grandes dimensions, moyens de levage appropriés respectant les conditions de propreté, baies de contrôle électroniques permettant d'alimenter le satellite et de simuler des moyens impossibles à mettre en œuvre (simulation du soleil, des perturbations d'attitude du satellite, des champs radioélectriques, etc.).
    Les essais spécifiques portent principalement sur :

    • tests d'intégration (validation des interfaces) ;
    • essais de vibration à basse fréquence sur un pot vibrant ;
    • résistance au bruit subi pendant le lancement, avec essai dans une chambre acoustique réverbérante ;
    • essais vide-thermique permettant de simuler le fonctionnement du satellite dans les conditions spatiales ;
    • mesures des performances radioélectriques dans une chambre anéchoïde ;
    • essais mécaniques spéciaux comme la mise en apesanteur des générateurs solaires et des réflecteurs d'antennes ;
    • tests fonctionnels destinés à vérifier que la partie testée remplit sa mission dans tous les cas de figure définis dans le cahier des charges, nécessitant des équipements mécaniques, électriques et électroniques spécifiques aux vérifications de fonctionnement (MGSE, EGSE) et le développement des logiciels associés.
    Les tests sont d'autant plus poussés que la maintenance en orbite est impossible et qu'un satellite n'est souvent pas remplaçable. Les tests sont effectués sur des modèles intermédiaires et éventuellement le modèle de vol à différents niveaux : composant (par exemple télescope), sous-système (par exemple système de contrôle d'orbite et d'attitude) et satellite.

    Lancement

    - Choix du lanceur
    Le choix d'un lanceur est généralement fait par le propriétaire du satellite.
    Toute une gamme de lanceurs commerciaux est disponible sur le marché avec des capacités de lancement variées et des fiabilités plus ou moins importantes. Un satellite devant pouvoir s'adapter à divers lanceurs, compétitivité commerciale oblige, des interfaces standards satellite/lanceur ont été définis. Ainsi, les satellites de télécommunications, représentant le plus gros du marché, sont généralement compatibles avec l'Ariane européenne, la Delta américaine, les Proton et Soyouz russes, la Longue marche chinoise, la Zénith ukrainienne.
    La guerre des prix existe aussi entre les opérateurs de lancement, conduisant à des différences parfois appréciables. Par exemple, pour les lancements de satellite(s) vers l'orbite de transfert géostationnaire, ces prix peuvent aller de 13 à 18 k€ / kg de satellite.

    - La campagne de lancement
    La campagne de lancement d'un satellite comprend :

    • la préparation du satellite et son installation sur le lanceur ;
    • le lancement et l'injection sur une orbite souvent provisoire ;
    • la mise à poste du satellite qui nécessite éventuellement plusieurs mises à feu des moteurs pour permettre au satellite de rejoindre son orbite définitive.
    - La préparation du satellite
    Lorsque la qualification du satellite est achevée chez le constructeur, le satellite est convoyé jusqu'au site de lancement pour son installation sur le lanceur. Le transfert a lieu au moins un mois avant la date de lancement prévue pour que toutes les tâches de préparation puissent être réalisées :

    • après déballage, le satellite est installé dans une salle blanche dédiée préservée de toute contamination biologique ;
    • si nécessaire les derniers composants du satellite sont assemblés ; des tests électriques et mécaniques (déploiement des panneaux solaires…) sont effectués pour s'assurer du bon fonctionnement des différents sous-systèmes. Les batteries électriques sont installées ou rechargées ;
    • les ergoliers font le plein des réservoirs d'ergols non stockables du satellite : ces carburants souvent très toxiques nécessitent des dispositifs de protection et de sécurité très poussés ;
    • le satellite est alors transporté jusqu'à la tour d'assemblage. Là, il est installé au sommet de la fusée éventuellement avec d'autres satellites (lancement double ou plus). La coiffe est mise en place ;
    • peu de temps avant la date de lancement la fusée complète est convoyée jusqu'à l'aire de lancement
    Le lancement
    - Les conditions de satellisation
    La latitude de la base de lancement a une incidence importante sur l'orbite qui peut être atteinte par un satellite:

    • un satellite ne peut pas être directement lancé sur une orbite ayant une inclinaison inférieure à la latitude de sa base spatiale de départ. Ainsi depuis la base de Baïkonour (latitude = 45°), un satellite ne peut pas atteindre directement l'orbite géostationnaire (inclinaison = 0°) : il est donc nécessaire après satellisation de modifier l'inclinaison du plan de l'orbite de 45°. Or, les modifications d'inclinaison de plan d'orbite sont particulièrement coûteuses en carburant car le satellite en orbite se comporte comme un gyroscope en rotation : il faut ainsi imprimer une vitesse supplémentaire de 3 600 m/s à un satellite pour modifier son plan d'orbite de 30° ;
    • lorsque le lancement se fait vers l'Est, la rotation de la Terre fournit un supplément de vitesse au lanceur et au satellite. Le gain en vitesse dépend de la latitude : il est maximal au niveau de l'équateur (465 m/s) et nul aux pôles.
    Pour ces deux raisons les bases de lancement situées près de l'équateur sont avantagées : elles ont un quasi-monopole des lancements de satellites géostationnaires et fournissent un surcroît de puissance aux fusées par rapport à un lancement depuis des bases spatiales situées à des latitudes plus septentrionales (à l'origine de la décision de lancer de fusées Soyouz depuis la base spatiale de Kourou).

    Le lanceur place le satellite sur une orbite initiale qui dépend de plusieurs paramètres :

    • l'inclinaison i de l'orbite est déterminée par l'azimut Az du lanceur à la fin de sa phase propulsée et de la latitude l : cos (i) = sin (Az) × cos (l) ;
    • la longitude du nœud ascendant☊ dépend de l'heure du lancement et de la longitude ;
    • l'argument du périgée ω qui détermine la position du périgée sur l'orbite dépend de la localisation du point d'injection et de la composante verticale de la vitesse (par rapport au sol). Le point d'injection se situe à l'arrêt de la poussée du lanceur : il correspond au début de la trajectoire du satellite sur son orbite. Si la composante verticale de la vitesse est nulle au point d'injection le périgée se confond avec le point d'injection.
    L'heure de lancement est donc un facteur souvent important. Pour certains satellites héliosynchrones, la fenêtre de lancement est réduite à quelques minutes par jour. D'autres critères peuvent être pris en compte en particulier la position du soleil lorsque le satellite entame son orbite : celle-ci a une incidence sur les capteurs pilotant le contrôle de l'orientation et sur l'éclairement des panneaux solaires.

    Lorsqu’un satellite doit être mis en orbite autour d'une autre planète, il est nécessaire de prendre en compte les positions relatives de la Terre et de la planète visée : pour des raisons de coût, ces satellites sont généralement conçus pour emporter une quantité de carburant correspondant aux configurations les plus favorables. Celles-ci peuvent n'apparaître qu'à des intervalles de temps éloignées (créneau d'environ huit mois tous les deux ans pour Mars). Le calendrier de réalisation du satellite tient évidemment compte de la fenêtre de tir mais à la suite de retard dans le développement ou de problèmes avec le lanceur, il est arrivé que, la fenêtre de tir ayant été manquée, le lancement soit reporté de plusieurs mois sinon de plusieurs années.

    - La mise sur orbite
    Selon le type d'orbite le lanceur place le satellite immédiatement sur son orbite définitive (satellites en orbite basse) ou sur une orbite d'attente ou de transfert (satellite géostationnaire…). Le lanceur après avoir décollé prend un azimut de manière à ce que le vecteur vitesse se rapproche le plus possible du plan d'orbite cible à l'extinction des moteurs du lanceur. La coiffe est larguée dès que la pression aérodynamique peut être supportée par la charge utile (entre 100 et 150 km d'altitude). Lorsque le moteur du lanceur s'éteint le satellite entame sa première orbite : c'est le point d'injection. Si par suite d'une défaillance partielle du lanceur, la vitesse de satellisation n'est pas atteinte, le satellite effectue un vol balistique et retombe vers le sol. Si la composante verticale de sa vitesse par rapport au sol est nulle au point d'injection ce dernier se confond avec le périgée de l'orbite sinon le périgée se trouve à une altitude inférieure. Il subsiste toujours de petits écarts par rapport à l'orbite visée (les dispersions) qui sont corrigées au cours de la mise à poste définitive.

    Avant le largage le lanceur modifie son orientation conformément au besoin du satellite. Le lanceur imprime une vitesse de rotation plus ou moins importante au satellite pour lui donner une certaine stabilité. Le satellite se sépare alors du lanceur. Le lanceur peut répéter cette opération plusieurs fois s'il s'agit d'un lancement multiple. Le satellite libéré met en service ses panneaux solaires en les déployant si nécessaire (manœuvre parfois source de défaillances). Il utilise ses senseurs pour définir son orientation dans l'espace et corrige celle-ci à l'aide de ses moteurs d'attitude de manière à pointer ses panneaux solaires et ses instruments dans la bonne direction.


    [​IMG]
    Description : Schéma de lancement Ariane 5 ECA
    Date : avril 2009
    Source : Travail personnel
    Auteur : Pline
    Ce fichier est sous licence Creative Commons
    Paternité – Partage des conditions initiales à l’identique 3.0 Unported, 2.5 Générique,
    2.0 Générique et 1.0 Générique.

    _____________________

    La mise à poste

    Une fois que le satellite a entamé son vol orbital, différentes manœuvres peuvent être nécessaires pour mettre le satellite sur son orbite définitive. Ce sont principalement :

    • une modification de la forme de l'orbite (modification de l'excentricité de l'orbite) ou un changement d'orbite (orbite géostationnaire) ;
    • un changement du plan d'orbite en particulier une modification de l'inclinaison ;
    • des ajustements fins de l'orbite et de l'orientation du satellite pour permettre au satellite de remplir sa mission de manière nominale.
    Les modifications de la forme de l'orbite sont effectuées dans la mesure du possible lorsque le satellite se trouve à son apogée : c'est le point de l'orbite où la vitesse est la plus faible et où donc les modifications à apporter à cette vitesse sont les plus réduites et consomment le moins d'ergols. Dans le cas d'une orbite géostationnaire, le satellite est injecté par les lanceurs modernes sur une orbite fortement elliptique dont l'apogée se situe à l'altitude visée de (36 000 km) : lorsque le satellite atteint son apogée, il a une vitesse d'environ 1,5 km/s. L'orbite est alors circularisée en imprimant une vitesse de 1 500 m/s dans une direction tangente à l'orbite cible grâce au moteur d'apogée du satellite. Lorsque le satellite doit être positionné sur une orbite basse, le lanceur injecte généralement le satellite directement sur l'orbite cible et celui-ci n'a besoin d'effectuer avec ses moteurs que des réglages fins.

    - Contrôle lors de la mise à poste
    Pour une mise en orbite géostationnaire, les opérations de mise à poste sont longues et complexes. Elles sont effectuées par un centre de contrôle spécialisé disposant d'informations sur le satellite, dès la séparation de son lanceur, quelle que soit sa position autour de la Terre, provenant d'un réseau de poursuite comportant de grandes antennes réparties sur divers continents, et de logiciels spécialisés pour ces manœuvres.
    Les centres capables de faire ces manœuvres sont peu nombreux. Ils appartiennent généralement à des agences spatiales, dont, pour l'Europe : l'ESA, depuis son Centre européen d'opérations spatiales (ESOC) à Darmstadt ; et le CNES (dont le centre de contrôle est au Centre spatial de Toulouse (CST) ; mais également à quelques grands opérateurs des satellites de télécommunications, dont Eutelsat. Quelques industriels fabricant des satellites de télécommunications — c'est le cas, en particulier de Thales Alenia Space qui possède un tel centre dans le Centre spatial de Cannes Mandelieu — ont leur propre centre et s'occupent de cette mise à poste pour le compte de leurs clients jusqu'à la prise en charge du satellite par celui-ci et sa propre station de contrôle du satellite opérationnel.


    La gestion en phase opérationnelle

    Le fonctionnement des satellites est en grande partie automatisé mais certaines tâches de maintenance ou liées à la mission doivent être assurées par des moyens situés au sol (segment sol). Les principales tâches assurées depuis le sol sont :

    • la surveillance des paramètres de fonctionnement ;
    • la correction des anomalies ;
    • le contrôle et les corrections des paramètres de la trajectoire ;
    • l'envoi d'instructions à la charge utile ;
    • la collecte et le traitement des données recueillies par la charge utile.
    - Les moyens au sol
    Les moyens au sol comprennent le centre de contrôle, le réseau de stations terrestre et pour certaines missions (Spot, Météo…) des centres de collecte et de traitement des données collectées par la charge utile du satellite. Le centre de contrôle assure généralement la surveillance et le contrôle de plusieurs satellites : le centre de contrôle de l'Agence spatiale européenne situé à Darmstadt (Allemagne) est ainsi chargé de tous les satellites et sondes spatiales en activité lancés par l'Agence (environ 20 en 2006). Le centre de contrôle utilise, pour communiquer avec les satellites, un réseau d'antennes paraboliques de grande dimension : l'ESA a ainsi son propre réseau de stations terrestres, l'ESTRACK (European Space Tracking), réparti sur une dizaine de sites assurant une bonne couverture pour les orbites les plus fréquentes et complété pour certaines missions par des antennes relevant d'autres organisations. Ces stations permettent de recevoir les paramètres de fonctionnement, d'envoyer des données et des instructions, de recevoir les données transmises par la charge utile (photos des satellites d'observation, mesures des satellites scientifiques) et de contrôler avec précision la trajectoire.

    Les opérateurs de satellites de télécommunications possèdent leurs propres centres de contrôle pour le suivi de leur(s) satellite(s). Ces centres sont parfois construits par le constructeur du satellite dans le cadre de livraisons «clés en main».

    La surveillance des paramètres de fonctionnement et la correction des anomalies
    Le satellite mesure de manière automatique de nombreux paramètres (tension électrique, température, pression dans les réservoirs…) permettant au contrôle au sol de s'assurer de son bon fonctionnement. Si la valeur d'une de ces télémesures (mesure à distance) sort des fourchettes définies par avance, le contrôleur est alerté. Après analyse de l'impact et étude des solutions, il envoie, si c'est nécessaire et techniquement possible, des instructions pour ramener le fonctionnement du composant défaillant à la normale ou pallier son dysfonctionnement : à cet effet de nombreux équipements à bord des satellites sont doublés ou triplés pour compenser l'impossibilité d'intervenir sur place pour réparer.

    Certaines pannes sont néanmoins imparables (blocage des mécanismes de déploiement des panneaux, problème sur le moteur d'apogée…). Les organisations qui mettent en œuvre des satellites devant absolument assurer un service continu — satellites de télécommunication, satellites d'observation avec des contraintes commerciales (Spot, Ikonos), satellites militaires (GPS), satellites météo… — disposent généralement d'au moins un satellite de secours déjà en orbite qui est activé et positionné en cas de défaillance de l'engin opérationnel.


    - Le contrôle et les corrections des paramètres de la trajectoire
    Pour remplir sa mission, le satellite doit suivre une orbite et maintenir son orientation en limitant les écarts à des valeurs inférieures à celles définies pour la mission. Le maintien à poste du satellite, souvent piloté depuis le centre de contrôle, consiste à contrôler et corriger les écarts lorsque ceux-ci deviennent trop importants.

    Le satellite subit constamment des perturbations qui modifient son orbite en l'éloignant de l'orbite de référence. Dans le cas d'un satellite en orbite géostationnaire, sa latitude normalement nulle est modifiée sous l'influence de la Lune et du Soleil (perturbation nord-sud). Les irrégularités du champ de gravité terrestre induisent un retard ou une avance sur la trajectoire nominale (perturbation est-ouest). Une déformation similaire de l'orbite est due à la pression de la radiation solaire. Les écarts par rapport à l'orbite de référence sont acceptés tant qu'ils sont inférieurs à 1/10 de degré en longitude et en latitude. Si l'écart est supérieur, la trajectoire doit être corrigée en utilisant la propulsion du satellite.

    Le centre de contrôle du satellite effectue ces corrections après avoir mesuré les écarts avec précision grâce aux stations terrestres et déduit les corrections à apporter. L'opérateur envoie alors vers le satellite des instructions par la liaison montante de télécommunications (liaison de télécommande) : celles-ci déclenchent les moteurs pour une durée et une poussée soigneusement calculée à des endroits précis de l'orbite pour optimiser la consommation du carburant. Sur un satellite géostationnaire les plus grosses corrections concernent la dérive nord-sud : il faut fournit une vitesse cumulée de 40 à 50 m/s par an pour corriger cette déviation (à comparer à l'impulsion spécifique de 1 500 m/s nécessaire pour le transfert en orbite géostationnaire).

    L'orientation du satellite doit être également maintenue avec une grande précision durant toute la durée de vie du satellite pour que ses instruments fonctionnent correctement. En particulier les satellites d'observation doivent assurer le pointage de leur optique avec une précision d'environ 0,1° en limitant les mouvements de rotation supérieurs à 0,005°/s (qui peuvent être induits par le mouvement de pièces mécaniques) sous peine d'obtenir des images floues ou déformées. Le calculateur embarqué du satellite utilise ses senseurs pour déterminer périodiquement l'orientation du satellite. Les gyromètres mesurent les vitesses angulaires autour de chaque axe. Lorsque les seuils de tolérance sont dépassés, le calculateur utilise alors le système de propulsion du satellite ou effectue ces corrections en agissant sur des volants d'inertie.

    - L'envoi d'instructions à la charge utile
    Le satellite dispose d'une certaine autonomie dans l'accomplissement de sa mission. Mais certains des paramètres et le déclenchement des opérations sont fournis ou confirmés par le contrôle au sol : ainsi dans le cas d'un satellite d'observation à vocation commerciale, le programme de prises de vue, qui entraîne des séquences précises de déclenchement et d'orientation de l'optique, est défini au cours de la mission en fonction des besoins exprimés par les clients finaux. Les séquences d'instruction correspondantes sont transmises au satellite périodiquement lorsque celui-ci est en visibilité d'une des stations terrestres.

    - La collecte et le traitement des données de la charge utile
    La charge utile des satellites recueille des données qui doivent être transmises au sol à des centres de traitement dédiés capables de les exploiter (cela ne concerne pas les satellites de télécommunications et de positionnement dont la mission se limite à assurer un rôle de relais ou à transmettre des données vers des terminaux banalisés). Les données sont destinées au client qui peut être, selon le type de mission, la société ou l'organisme qui a commandé le satellite (par exemple Spot Image ou l'ESA) ou le client final (par exemple la société ou l'organisme qui achète les images de Spot Image). Si ce dernier reçoit ces données via son propre réseau d'antennes il doit disposer d'un décodeur lui permettant d'utiliser les informations transmises par le satellite. Les données ne peuvent être transmises que lorsque les stations terrestres sont en visibilité ce qui nécessite des capacités de stockage importantes à bord du satellite. L'architecture des installations de collecte et de traitement des données peut être complexe lorsque celles-ci proviennent de plusieurs réseaux nationaux de satellites comme c'est le cas pour les données météorologiques.

    La fin de vie

    La fin de vie opérationnelle d'un satellite se produit généralement quand la source d'énergie des propulseurs (ergols) est épuisée et que l'engin ne peut plus maintenir son orientation et son orbite dans des fourchettes de valeur compatibles avec sa mission. Pour certains satellites scientifiques (télescopes infrarouges) la fin de vie peut être provoquée par l'épuisement des liquides utilisés pour refroidir les instruments d'observation. Pour les satellites soumis à des périodes d'obscurité relativement longues l'arrêt peut être provoqué par la défaillance des batteries épuisées par les cycles de charge/décharge.
    Il arrive encore fréquemment que le satellite cesse de fonctionner à la suite de la défaillance d'un composant.
    Les collisions avec des débris produits par l'activité aérospatiale (autres satellites, restes de fusée) ou avec des astéroïdes sont également une source d'arrêt prématuré. Enfin les éruptions solaires peuvent endommager les satellites.


    Les régions dans lesquelles évoluent les satellites sont aujourd'hui relativement encombrées par l'accumulation de satellites hors d'usage et de débris spatiaux. Le problème est devenu suffisamment préoccupant pour que des règles de bonne conduite émergent progressivement en ce qui concerne les satellites en fin de vie. L'IADC (Comité inter agences de coordination des débris spatiaux en anglais Inter-Agency Space Debris Coordination Committee), qui réunit les principales agences spatiales, a ainsi proposé en 2002 des règles concernant les deux zones les plus encombrées de l'espace :

    • les satellites de télécommunication situés en orbite géostationnaire, doivent rejoindre en fin de vie une orbite de rebut dont le rayon est supérieur à leur orbite nominale (36 000 km) d'environ 230 km ;
    • les satellites en orbite basse (moins de 2 000 km), doivent subir une désorbitation en fin de vie qui garantit leur rentrée dans l'atmosphère et leur destruction dans un intervalle de temps qui ne doit pas excéder 25 ans.
    Ces mesures ont, si elles sont appliquées, une incidence non négligeable sur le coût des satellites puisque le carburant consacré au changement d'orbite en fin de vie peut représenter plus de 10 % de la masse du satellite dans le cas le plus défavorable.


    ..........
     
  15. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113
    Satellite artificiel
    ________________________________________________




    État des lieux

    Panorama de l'activité


    En 2008, une centaine de satellites ont été lancés dont 42 au titre d'activités commerciales (essentiellement télécommunications) : 66 satellites pesaient plus de 500 kg et 10 moins de 20 kg. Les satellites commerciaux comportaient 18 satellites géostationnaires et 23 satellites destinés à l'orbite basse.
    L'activité commerciale a connu un pic d'activité à la fin des années 1990 lié à la bulle Internet avec la mise en place de constellations de satellites de télécommunications en orbite basse (Iridium…) et le lancement de 33 satellites en orbite géostationnaires (2000). Elle a lourdement plongé dans les années suivantes et reprend aujourd'hui grâce aux demandes de renouvellement et à un marché de télévision par satellite en pleine croissance sur tous les continents.

    Le segment des mini et microsatellites destinés à l'orbite basse connaît un certain développement au détriment du segment supérieur grâce à la miniaturisation des composants. Les nanosatellites ont connu un engouement en 2006 (24 satellites de cette classe) qui est retombé aujourd'hui. Le nombre de satellites commerciaux géostationnaires lancés est relativement stable mais leur capacité est en constante progression. Ils se répartissent entre quatre classes : plus de 5,4 tonnes (5 satellites lancés en 2007), entre 4,2 et 5,4 tonnes (7 satellites), de 2,5 à 4,2 tonnes (5 satellites), moins de 2,5 tonnes (2 satellites). Les autorités américaines ne prévoyaient pas en 2007 d'évolution significative du nombre de satellites commerciaux pour la décennie à venir.

    Les satellites ont été mis en orbite, en 2008, par une soixantaine de fusées dont 26 russes (43 satellites), 15 américaines (8 satellites), 11 chinoises (12 satellites), 6 européennes (11 satellites). Près de 20 types de lanceurs ont été utilisés dont 8 russes. Les capacités de ces lanceurs sont très variables (de 1 tonne à plus de 20 tonnes en orbite basse) ; ils sont spécialisés : certains sont optimisés pour l'orbite basse comme Soyouz d'autres pour l'orbite géostationnaire comme Ariane. Les lanceurs ont encore aujourd'hui des problèmes de fiabilité : deux échecs en 2008 et quatre échecs respectivement en 2007 et 2006.

    Le coût d'un satellite est élevé : il fallait compter de 100 à 400 millions de dollars en 2008 pour un satellite géostationnaire. À la fin des années 1990, le coût unitaire de chaque satellite des constellations de télécommunications déployées en orbite basse s'échelonnait entre environ 100 M$ (Iridium 66 satellites de 700 kg) et 10 M$ (Orbcomm 28 satellites de 45 kg). Un satellite d'observation de la Terre lourd comme Geoeye de 2 tonnes a coûté 200 M$ alors que les cinq mini satellites Rapideye de 150 kg réalisant ensemble la même prestation ont coûté environ 30 M$ pièce. Les satellites militaires (750 M€/pièce pour satellite français d'observation Helios) et scientifiques (4,5 G$ pour le futur télescope spatial James Webb) peuvent être encore plus coûteux. À ce prix, il faut ajouter le coût du lancement qui se situe entre 10 000 $/kg pour l'orbite basse et 20 000 $/kg pour l'orbite géostationnaire ainsi que celui des installations et du support au sol.

    Les programmes nationaux et internationaux

    L'activité commerciale de l'espace (générée pour l'essentiel par les satellites de télécommunications) représentait en 2008 114 milliards de dollars tandis que l'espace institutionnel, pris en charge par le budget public, est estimé la même année à 71 G$. En 2007, le budget des États-Unis consacré à l'espace (satellites non commerciaux militaires et civils + lanceurs + vols habités + sondes spatiales) représentait 54 G$ (0,39 % PIB) soit 75 % des dépenses mondiales.
    En dehors des États-Unis peu d'États disposent à la fois des moyens technologiques et de la volonté politique nécessaires pour mener une activité spatiale significative. Les budgets consacrés à l'espace sont dans l'ordre décroissant ceux de la France (2,9 G$, 0,14 % PIB), du Japon (2,2 G$, 0,05 %), de la Chine (2,1 G$, 0,06 %), de la Russie (1,8 G$, 0,11 %), de l'Inde (1 G$, 0,09 %), de l'Allemagne (1,6 G$, 0,05 %), Italie (1,3 G$, 0,06 %). Les principales agences spatiales sont dans l'ordre décroissant des budgets le DOD (Department of Defense chargé des satellites militaires américains) 27 G$, la NASA 16 G$, le National Reconnaissance Office (NRO) organisation américaine chargée des satellites de reconnaissance et d'écoute 9 G$, l'Agence spatiale européenne (ESA) 4 G$, la NGA (National Geospatial-Intelligence Agency chargé de la collecte de l'imagerie par satellite pour le compte de la défense américaine) 2 G$, l'agence spatiale française (CNES) environ 2,9 G$, l'agence japonaise (JAXA), l'agence russe Roskosmos et l'agence américaine de météorologie (NOAA).

    L'espace militaire est dominé par les États-Unis qui y consacrent 36 G$ et qui est la seule nation à disposer d'un dispositif complet et permanent (télécommunications militaires, alerte avancée, reconnaissance, écoute électronique, surveillance océanique, système de positionnement par satellites). La Russie tente de fiabiliser son système de positionnement par satellites GLONASS et maintient une flotte de satellites de reconnaissance et d'écoute assurant une couverture réduite par rapport à l'époque de la guerre froide.
    La Chine occupe la troisième place : elle met en place un système de positionnement par satellites national, dispose de satellites de reconnaissance et a prouvé sa capacité militaire spatiale en détruisant un de ses satellites en 2007. Il n'existe pas de politique spatiale militaire européenne. Quatre pays européens ont investi de manière significative dans l'espace militaire en premier lieu la France qui dispose depuis plusieurs années de satellites de reconnaissance optique (Hélios) et de télécommunications militaires (Syracuse). Pour l'écoute électronique et l'alerte avancée seuls des démonstrateurs ont été lancés jusqu'à présent. Le Royaume-Uni a concentré ses efforts sur les télécommunications militaires tandis que l'Italie et l'Allemagne disposent de satellites de reconnaissance radar.


    L'industrie des satellites

    L'activité spatiale représentait un volume d'activité de 50 G€ en 2007. Une grande partie de cette somme est dépensée au sein des agences spatiales ou correspond à des marchés captifs d'organismes gouvernementaux (secteur spatial militaire aux États-Unis). Le marché des satellites et des prestations associées soumis à la concurrence représentait en 2007 environ 12,3 G€ qui se ventilait en 34 % pour le domaine des satellites commerciaux, 27 % pour civil européen, 9 % pour les satellites militaires européens, 25 % pour les satellites civils hors Europe et 4 % pour les satellites militaires hors Europe. La ventilation du chiffre d'affaires par application donne : 45 % pour les télécommunications, 16 % pour l'observation de la Terre, 5 % pour la navigation et la localisation, 10 % pour les sciences et techniques, 8 % pour les infrastructure et transport et 16 % pour d'autres applications.

    Ce marché étroit, nécessitant des compétences pointues et des moyens d'essais lourds, était dominé en 2006 par 5 acteurs majeurs dont 3 entreprises américaines et 2 entreprises européennes : Lockheed Martin (4 G€ sur ce secteur), Northrop Grumman (2,6 G$), Boeing (2,1 G$), Thales Alenia Space (1,6 G$) et EADS Astrium Satellites (1,3 G$). Les perspectives d'évolution du chiffre d'affaires sont stables pour les applications commerciales et en forte croissance pour les applications financées par les agences spatiales (observation de la Terre, scientifique…) et la défense.


    Perspectives

    Les évolutions techniques


    Les évolutions répondent à plusieurs objectifs :

    • l'allongement de la durée de vie qui est portée à 15 ans pour les satellites géostationnaires et vise 10 ans pour certains satellites à orbite basse ;
    • l'augmentation des capacités des satellites commerciaux ;
    • l'amélioration des performances des instruments pour les satellites scientifiques.
    Les principales évolutions sont les suivantes :

    • les satellites de télécommunications sont de plus en plus puissants et pèsent toujours plus lourd ;
    • les satellites contiennent une électronique de plus en plus puissante (la puissance électrique moyenne des satellites doit passer à 30 kW à court terme) et compacte qui nécessite des dispositifs de dissipation de chaleur beaucoup plus sophistiqués ;
    • le ratio masse charge utile/masse du satellite ne se modifie pas sensiblement mais pour une même masse la capacité de la charge utile est de plus en plus importante ;
    • la capacité de certains instruments progresse de manière importante. Ainsi dans le domaine des instruments d'optique l'ensemble optique avec la mécanique et l'électronique associées des satellites Spot d'une masse de 250 kg pour un champ optique balayé de 60 km et une résolution de 10 mètres est remplacé sur la génération suivante par un ensemble pesant 160 kg avec un champ de 120 km et une résolution de 3 mètres soit un gain performances/encombrement de 10 ;
    • l'industrie des satellites abandonne les circuits électroniques durcis au profit de composants banalisés dont la fiabilité est renforcée grâce à des artifices logiciels ;
    • le développement de la propulsion électrique : dès à présent des gains importants sont obtenus sur la masse des ergols emportés sur les satellites de télécommunication en orbite géostationnaire par contre, du fait de la faible poussée elle ne peut être utilisée actuellement pour mettre le satellite à poste.
    La diminution des coûts

    Les coûts de fabrication et de lancement d'un satellite sont un frein majeur au développement de leur utilisation. Sa construction reste du domaine de l'artisanat compte tenu du faible nombre produit chaque année et de la grande diversité des engins. D'ailleurs les instruments embarqués sont encore souvent réalisés par des universités ou des laboratoires de recherche. Le coût de lancement (de 10 000 à 20 000 $ le kilogramme) reste prohibitif : aucune solution technique n'a jusqu'à présent permis d'abaisser ce coût. La navette spatiale a démontré que les économies procurées par un lanceur réutilisable restaient théoriques. Deux constructeurs américains, SpaceX et Orbital Science, en partie subventionnés, se sont lancés dans la réalisation de nouveaux lanceurs avec comme objectif de faire baisser sensiblement le prix du kilogramme placé sur orbite (le lanceur Falcon vise un coût de 3 000 $/kg). Les premiers résultats sont attendus fin 2009. D'autres solutions sont mises en œuvre pour réduire la masse du satellite : miniaturisation des composants et développement de la propulsion électrique nettement moins gourmande en ergols.


    La Terre sous observation

    [​IMG]


    __________________________
    Description : Les satellites de la NASA qui étudient les cycles de l'eau et de l'énergie
    Date : April 2009
    Source : Travail personnel
    Auteur : NASA * http://wec.gsfc.nasa.gov/images/NEWS_Pillar_med.jpg
    Autres versions : File:NEWS Pillar med.jpg
    Ce fichier provient de la NASA.
    Sauf exception, les documents créés par la NASA ne sont pas soumis à copyright.
    Pour plus d'informations, voir la politique de copyright de la NASA

    __________________________

    Le changement climatique induit par l'activité de l'homme est devenu officiellement une préoccupation majeure depuis le protocole de Kyoto (1997). L'ampleur du phénomène est mal maîtrisée car il nécessite de modéliser les interactions très complexes entre les océans, les continents et l’atmosphère. Les satellites d'observation jouent un rôle clé dans la collecte des données utilisées par ces travaux de modélisation ainsi que pour la recherche des indices de changement. Le projet GEOSS (Système mondial des systèmes d'observation de la Terre), entré dans une phase active en 2005, vise à coordonner à l'échelle mondiale le recueil des données fournies par les moyens satellitaires et terrestres et leur mise à disposition.

    La modélisation et l'étude d'impact du changement climatique font partie des objectifs majeurs du programme GMES (Global Monitoring for Environment and Security) lancé par l'Agence spatiale européenne en 2001 qui est donc le volet européen du projet GEOSS. GMES doit permettre de fédérer au niveau européen l’ensemble des moyens d’observation du globe aussi bien terrestres que spatiaux existants : satellites d'observation nationaux, européens, satellites météorologiques (Eumetsat). Le programme doit garantir la continuité du recueil des données, leur normalisation et faciliter leur mise à disposition. L'ESA prévoit de lancer dans le cadre de GMES cinq satellites d'observation (Sentinel 1 à 5) à compter de 2011 chacun étant doté d'instruments spécifiques (radar, optique...).
    Le projet franco-américain A-Train, qui comporte six satellites lancés entre 2002 et 2008 en formation à quelques minutes d'intervalle sur une orbite héliosynchrone, s'inscrit dans cette problématique. Les 15 instruments embarqués doivent permettre de recueillir de manière coordonnée de nombreuses données permettant à la fois d'améliorer notre compréhension du fonctionnement climatique et d'affiner les modèles de prévision numérique.

    La maturité commerciale des applications

    L'apparition des satellites artificiels a donné naissance à un secteur commercial centré initialement sur les télécommunications fixes qui s'est considérablement développé grâce à plusieurs progrès technologiques : la généralisation des transistors puis la miniaturisation de l'électronique (années 1960), l'utilisation de la bande Ku autorisant des antennes satellite de réception de petite taille (années 1980), la numérisation de la télévision permettant la diffusion de bouquets de chaînes (années 1990). Le chiffre d'affaires annuel a ainsi atteint 114 milliards de dollars en 2007. Le secteur astronautique ne représente qu'une faible partie de ce chiffre (5 %) soit 3,8 G$ pour les constructeurs de satellites et 1,54 G$ pour les lanceurs.
    L'essentiel de l'activité est réalisée en aval par les sociétés de service (bouquets de télévision…) et les distributeurs de matériel utilisés par les clients finaux (antennes, décodeurs, GPS). Les opérateurs des satellites des télécommunications (
    14,3 G$ de chiffre d'affaires en 2007) font fabriquer les satellites dont ils louent les répéteurs à des sociétés de télécommunications fixes, des entreprises (réseau d'entreprises), des opérateurs de télévision par satellite (représentent les 3/4 de l'activité). Ils peuvent également créer des services à valeur ajoutée. Les principaux opérateurs ont une envergure internationale : ce sont SES (2,4 G$), Intelsat (2,2) et Eutelsat (1,3).

    De nouvelles utilisations commencent à trouver des débouchés commerciaux importants :

    • de nouveaux opérateurs (Globalstar, Iridium et Orbcomm) se sont lancés à la fin des années 1990 sur le marché de la téléphonie mobile en faisant construire des constellations de satellites placés en orbite basse. Après des débuts très difficiles (les investissements étaient surdimensionnés par rapport au marché potentiel), cette activité a trouvé son point d'équilibre avec un chiffre d'affaires en 2007 de 2,1 G$ (en incluant un opérateur de longue date Inmarsat) ;
    • l'Internet par satellite pour la fourniture de liaisons ADSL aux usagers résidant dans des régions mal desservies ;
    • l'imagerie en moyenne résolution dont le leader est Spot Image (140 M$ en 2007) ;
    • l'imagerie en haute résolution d'apparition beaucoup plus récente dont les deux leaders sont Digital Globe (en) (152 M$) et Geoeye (184 M$). Cette activité est portée par des clients institutionnels (armée, organismes gouvernementaux) mais également par une clientèle d'entreprises dont le représentant le plus emblématique est Google qui a obtenu l'exclusivité sur les images du satellite Geoeye-1 (résolution 0,4 m) lancé en 2008 et destiné à alimenter le site Google Earth ;
    • l'imagerie radar produite par des satellites comme Radarsat (Canada) et TerraSAR-X (Allemagne).
    La gestion des débris spatiaux

    Le nombre d'objets artificiels placés en orbite s'est régulièrement accru depuis le début de la conquête spatiale. À côté des satellites en fonction proprement dit, on trouve des débris de lanceurs (étages entiers ou composants), des satellites hors d'usage (environ 2000 au changement de siècle[SUP]77[/SUP]) ou des débris de satellite. Il existe aujourd'hui :

    • environ 12 500 débris d'une taille supérieure à 10 cm qui sont tous répertoriés par le système de veille spatial américain (NORAD) ;
    • environ 300 000 (estimation) débris d'une taille comprise entre 1 et 10 cm ;
    • environ 35 millions de débris d'une taille comprise entre 1 mm et 1 cm.
    Ces débris sont en majorité situés à une altitude supérieure à celle des satellites placés en orbite basse (les débris situés à une altitude plus basse rentrent au bout de quelques années dans l'atmosphère terrestre et sont détruits). Ceux qui croisent aux altitudes utiles constituent une menace pour les satellites car leur vitesse de déplacement relative par rapport à ceux-ci (jusqu'à 20 km/s) génère une énergie cinétique telle qu'un débris de quelques cm peut mettre hors service un satellite. Ainsi en 1996, un fragment du troisième étage d'une fusée Ariane qui avait explosé en vol dix ans plus tôt a percuté le microsatellite français Cerise. Plus récemment la collision spectaculaire entre un satellite Iridium en service et un satellite Cosmos hors service le 10 février 2009 a démontré que le problème des débris devait être pris au sérieux.

    [​IMG]
    Description : LA NASA illustration sur la collision de CERISE
    avec un morceau de débris de fragmentation d'un corps de la fusée Ariane 1 en Juillet 24, 1996.
    Wich cassé le bras de stabilisation 6 mètres de long (Traduction Google)
    Date : upload date: 2007 9 16
    Source: Orbital Debris Education Package
    Auteur : National Aeronautics and Space Administration (NASA) :
    NASA Johnson Space Center -Orbital Debris Program Office
    Ce fichier provient de la NASA. Sauf exception,
    les documents créés par la NASA ne sont pas soumis à copyright.

    Pour plus d'informations, voir la politique de copyright de la NASA

    ____________________________

    Lorsque les agences spatiales détectent un risque de collision avec des débris d'une taille supérieure à 10 cm dont la trajectoire est généralement connue, l'orbite du satellite situé sur sa trajectoire est modifiée par le centre de contrôle pour s'écarter de la menace. Le CNES a ainsi réalisé trois manœuvres d'évitement sur ses satellites en 2007. Mais la menace la plus importante est constituée par les débris d'une taille comprise entre 1 cm et 10 cm dont la trajectoire n'est généralement pas connue. Le recours à un blindage (solution retenue pour la station spatiale) ne protège pas complètement les engins spatiaux et a un coût prohibitif (10 % du poids de la station spatiale). Des préconisations destinées à réduire le nombre de nouveaux débris produits ont été définies par l'IADC : désorbitation des satellites en fin de vie, passivation des étages de lanceurs satellisés (pour éviter qu'ils n'explosent, réduction du nombre de débris produits par les mécanismes de séparation ou de déploiement. Mais, du fait de leur coût, elles ne sont pour l'instant appliquées que sur la base du volontariat par certaines agences spatiales dont le CNES.

    La militarisation de l'espace

    Le traité de l'espace de 1967, interdit l'envoi en orbite d'armes nucléaires ou de destruction massive. Mais il n'empêche pas l'utilisation de satellites destinés à soutenir ou aider les forces militaires au sol. Aujourd'hui les armes comme les troupes des armées les plus modernes sont devenues en partie dépendantes d'une panoplie de satellites militaires en particulier de satellites de reconnaissance, de communications et de positionnement. Mais aucun satellite n'a jusqu'à présent été doté de capacité offensive. À la suite des prises de position des États-Unis soucieuse de se défendre de toute attaque nucléaire et de sanctuariser l'espace, les spécialistes évoquent le scénario d'une arsenalisation (c'est le terme consacré) de l'espace c'est-à-dire la mise en place d'armes susceptibles, soit de détruire depuis l'espace d'autres satellites ou des cibles au sol soit de détruire des satellites depuis le sol. L'absence de politique de défense européenne coordonnée en particulier dans le domaine du spatial militaire qui nécessite des budgets dépassant les capacités nationales, placerait l'Europe dans une très mauvaise position si ce scénario se réalisait. Un traité visant à démilitariser complètement l'espace n'a jusqu'à présent obtenu aucune signature.



    _______________________________________
    [​IMG]Cet article est reconnu comme «bon article»
    depuis sa version du 21 juin 2009
    (comparer avec la version actuelle).
    Pour toute information complémentaire,
    consulter sa page de discussion et le vote l'ayant promu.

    Nom de la page : Satellite artificiel
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Satellite artificiel de Wikipédia en français (auteurs)
    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique

    _______________________________________

    FIN
    de l'article "Satellite artificiel"


     
  16. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113


    Techniques diagnostiques
    de prévision météorologique




    Plusieurs techniques diagnostiques de prévision météorologique ont été développées au cours des siècles et en particulier au cours du XX[SUP]e[/SUP] siècle, avant le développement des ordinateurs. On parle parfois de "règles du pouce".


    [​IMG]
    Description : Météorologiste à l’œuvre
    au Storm Prediction Centre de Norman, Oklahoma
    Date :
    14:49, 21 July 2006
    Utilisateur :
    Pierre cb
    Autorisation : Cette image est dans le domaine public,
    car elle contient des matériaux qui seraient originaires
    de la US National Oceanic and Atmospheric Administration,
    pris ou effectués dans le cadre de ses fonctions officielles de l'employé

    __________________________________________


    Historique

    Depuis que les hommes regardent le ciel, l'observation des conditions météorologiques sur de longues périodes a permis de faire des relations entre les conditions et leur variation à plus ou moins long terme. La technique la plus simple a été de croire à la persistance du temps, suivie de la tendance climatologique et des statistiques par cas similaires.
    L'École norvégienne de météorologie a répandu le modèle de cyclogénèse des systèmes dépressionnaires des latitudes moyennes, dès 1919, en reliant les variations des conditions de pression et de température avec la dynamique du fluide atmosphérique. En 1922, Lewis Fry Richardson proposait une façon de calculer itérativement les équations primitives atmosphériques pour évaluer le déplacement de ceux-ci. Cependant, avant le développement des ordinateurs, il n'y avait aucun moyen de résoudre les équations en temps utile.


    Plusieurs météorologistes ont alors regardé des cas typiques de développement de systèmes météorologiques et en ont tiré des règles qui permettaient de savoir la vitesse et l'intensité de l'évolution des dépressions selon les paramètres initiaux disponibles. Il s'agit en fait de techniques qui se basent sur les théories météorologiques et les statistiques. Elles ne sont donc pas le fruit du hasard ni de l'intuition.

    Depuis les années 1970, les ordinateurs ont graduellement permis d'utiliser les données météorologiques afin de résoudre les équations en temps réel. La prévision numérique du temps ainsi obtenue, s'améliore d'année en année, tant dans la longueur de la période de prévision que dans la résolution spatiale. Les modèles numériques ont cependant par définition des instabilités de calcul, dues à la nature chaotique de l'atmosphère, qui peuvent fausser les résultats. Les techniques empiriques sont donc toujours utilisées pour donner au météorologiste une évaluation indépendante de la situation météorologique.

    Méthodes primitives

    Persistance

    La méthode la plus simple pour prévoir le temps est de tenir pour acquis que les conditions ne changeront pas. C'est une technique plutôt limitée car, par définition, l'atmosphère est en évolution. Cependant, dans certaines conditions stables, la persistance peut être utilisée. Ces conditions se rencontrent en particulier en été sous les Tropiques où la circulation atmosphérique des alizés est constante et le temps subit un cycle diurne de réchauffement donnant des orages, suivi d'un cycle nocturne stable avec ciel dégagé. La même chose se produit dans des situations de blocages météorologiques où la circulation d'altitude est faite de dépressions coupées de la circulation générale. Selon le cas, la persistance peut être utile pour quelques heures à quelques semaines.

    Variation barométrique

    La variation de la pression atmosphérique est utilisée par les navigateurs et les prévisionnistes depuis le XIX[SUP]e[/SUP] siècle. Les premiers utilisaient celle-ci pour juger du type de systèmes atmosphériques qui se dirigeait vers eux. Ainsi, une baisse de pression indique l'arrivée d'un creux barométrique ou d'une dépression, signe habituel de mauvais temps. Par contre, une hausse est signe de l'arrivée d'un système anticylonique de beau temps. Dans ce contexte, plus le changement de la pression est rapide plus le changement dans les conditions est rapide et intense.

    Les métérologistes, par contre, tracent des cartes de pression et de sa variation à partir des rapports des stations météorologiques pour avoir une vue d'ensemble de l'atmosphère. Il a été noté qu'une variation de plusieurs hecto-Pascal par heure est reliée à une intensification du mouvement vertical. Ceci implique la production de nuages et de précipitations si la pression baisse et un dégagement si elle monte. Le repérage de ces variations sur les cartes permet au prévisionniste de faire des extrapolations à court terme.

    Observations du ciel


    L'observation du ciel, des nuages et de leur forme permet d'extraire des informations qui permettent de prédire à court terme les changements. Ces observations étaient jadis traduites en dicton tels que « Soleil rouge le soir indicateur de beau temps pour le lendemain ». Les rapports météorologiques envoyés régulièrement par les stations météorologiques comportent une foule d'informations sur le type de nuages, le plafond, leur épaississement ou diminution de couverture. Avant l'introduction des images des satellites météorologiques, c'était la seule façon d'extrapoler l'étendue de la couverture des nuages à partir des observations. Cette connaissance des conditions du ciel et de leur tendance est toujours essentielle à court terme.

    Techniques reliées aux fronts

    Injection d'air froid

    La théorie des fronts météorologiques développée par les norvégiens décrit le cycle de vie d'une dépression aux latitudes moyennes le long du ruban de températures qui sépare les masses d'air sur Terre. Tout y est relié au déplacement de l'air froid vers l'équateur et l'air chaud vers les pôles. La chose primordiale est donc de repérer les zones où le ruban d'isothermes peut être courbé pour donner ce déplacement. La technique de l'injection de l'air froid tente d'estimer cela.

    L'établissement d'un courant d'air froid, qui ne s'étend que sur quelques centaines de kilomètres de large et qui de façon évidente traverse les isothermes du froid vers le chaud, est ce qu'on appelle une injection froide. Un tel phénomène est habituellement relié à un creux à 850hPa et se révèle très efficace comme mécanisme de cyclogénèse. Pour arriver à une prévision de développement d'une dépression météorologique, on suit les étapes suivantes :

    1. Déterminer la présence d'une injection froide.
    2. Déterminer l'heure et le lieu de l'injection froide.
    3. Vérifier s'il y a présence de mécanismes qui empêchent la cyclogénèse.
    4. Vérifier si les conditions dans lesquelles se produit l'injection froide sont favorables au creusement d'une dépression déjà existante ou à une nouvelle cyclogénèse.
    5. Déterminer l'heure et le lieu de la cyclogénèse.
    Pour déterminer la présence d'une injection froide vraiment efficace, on recherche un ruban d'isothermes qui se situe au sud de 38 °N sur la carte de 850 hPa, dont la différence de température entre les deux côtés du ruban d'isothermes soit d'au moins l5°C et dont la vitesse des vents, qui amène l'air froid, dépasse 40 km/h. Un fois qu'on a trouvé une telle situation, on suit le centre de la zone d'air froid sur les cartes météorologiques disponibles et on extrapole son mouvement futur.
    Pour vérifier si l'injection sera favorable à un creusement, il ne faut pas que l'injection soit au sud du flot général et l'angle entre le flot d'air et l'injection doit être assez grand (non parallèles). Ce qui favorise le plus le développement d'une dépression de surface sera: un creux de pression à 500 hPa dont l'amplitude est importante et une position de l'injection froide de 850 hPA qui se trouve à l'ouest de ce creux. Selon la position et l'intensité de ces paramètres, des tables permettent d'estimer la possibilité et l'intensité du développement d'une dépression de surface dans les 12 à 18 prochaines heures.


    Technique de George


    La technique de George a été développée pour prévoir les développements explosifs sur la côte est des États-Unis d'Amérique pendant l'hiver. Cette méthode trouve son utilité car il s'agit d'une région où peu de données sont disponibles et, encore aujourd'hui, les modèles numériques éprouvent des difficultés à prévoir ce type d'événements. Elle fut mise au point en compilant les données de plusieurs cas de développement maritime. Elle a donc une nature statistique et donne des indications sur le creusage, la vitesse et la direction du déplacement des dépressions. Les trois paramètres utilisés comme prédicteurs sont:

    1. La position du centre de dépression par rapport au patron à 500 hPa
    2. L'intensité de la circulation à 500 hPa au-dessus de la dépression
    3. Le gradient de température à 500 hPa. C'est-à-dire la différence entre la température au-dessus de la dépression et celle à l000 milles marins au nord-ouest de celle-ci
    - Développement
    On a constaté que de façon générale les dépressions de surface qui se développent ont tendance à se trouver sous une circulation d'altitude à 500 hPa qui suit des contours ouverts, c'est-à-dire que les lignes des isohypses s'écartent l'une de l'autre. Celles qui se comblent ont tendance à se retrouver sous des contours fermés. Les dépressions qui se développent beaucoup ont tendance à se situer au centre du courant à 500 hPa tandis que celles qui se développent moins se trouvent plus au bord du courant. De la même façon, les dépressions qui se comblent beaucoup se trouvent à l'intérieur d'un plus grand nombre de contours fermés que celles qui se comblent moins.

    - Intensité de creusage
    On a constaté que les dépressions qui s'intensifient sont en général associées à un courant et un gradient thermique à 500 hPa intenses. De plus, les dépressions qui se développent (comblent) de façon explosive se déplacent presque toujours rapidement (lentement). Le creusage de la dépression peut être déterminé à l'aide des deux paramètres suivants:

    1. La différence de hauteur de la 500 hPa pour des points situés à 7,5 degrés de latitude de part et d'autre de la dépression de surface. On mesure perpendiculairement au courant et on n'inclut que les contours ouverts
    2. La différence entre la température à 500 hPa au-dessus de la dépression et la température la plus froide (encore à 500 hPa) dans le quadrant nord-ouest à une distance inférieure à 15 degrés de latitude
    En utilisant un tableau des différences de hauteur comparées aux différences de température, spécialement conçu à cet usage, le météorologiste peut estimer la vitesse de creusement de la dépression de surface au cours des prochaines 24 heures. Cependant cette technique ne donne pas de méthode pour la vitesse de comblement des dépressions.

    - Déplacement
    La vitesse de déplacement est obtenue en mesurant les gradients de hauteur et de température à 500 hPa au-dessus de la dépression. L'unité de mesure est 7 degrés de latitude et le point central est la dépression elle-même. Comme pour le creusage, quand on mesure le gradient de hauteur on ne tient compte que des contours ouverts. Un autre tableau donne la vitesse en degrés de latitude par jour à partir des deux paramètres mesurés.
    Pour prévoir la direction du déplacement, on a classifié les différentes situations à 500 hPa en 8 catégories qui dépendent de la position de la dépression de surface sous le flot d'altitude (sur le bord extérieur, au centre, près du bord intérieur, avant ou après un creux) et sur la forme du flot lui-même (concave, convexe, avec un centre fermé, etc.). Il s'agit premièrement de trouver celle qui correspond le mieux à la situation du moment. Une fois cela fait, on suit les indications données pour la catégorie dans laquelle on se trouve.

    Règle d'Henry


    Un des problèmes difficiles qu'un météorologiste opérationnel doit résoudre est la détermination du moment où une dépression froide va commencer à s'ouvrir et à se déplacer en aval, dans le courant au niveau 500 hPa. Une dépression froide (où l'on retrouve un dôme d'air froid ou goutte froide) étant une circulation dont les contours de pression sont fermés de la surface à 500 hPa et dont les isothermes (lignes de températures égales) sont parallèles aux isobares. Les dépressions froides peuvent demeurer quasi-stationnaires durant plusieurs jours, gardant des conditions nuageuses et des précipitations sous forme d'averses tant qu'elles demeurent froides et fermées. Cependant, elles s'ouvrent éventuellement et les régions qui étaient nuageuses depuis plusieurs jours se dégagent alors. Les modèles numériques ont, à l'occasion, des difficultés pour déterminer ce moment.

    Il existe cependant certains signes qui sont précurseurs de l'ouverture d'une dépression froide. Le météorologue W. K. Henry, du National Weather Service, a fait une étude exhaustive du phénomène, et il en a tiré une règle qui porte son nom :
    "Une dépression froide s'ouvrira et commencera à se déplacer dans le courant lorsqu'un creux de pression majeur dans le même courant que la dépression froide, s'approchera à moins de 1 200 milles marins (20 degrés de latitude) du centre de la dépression froide.
    "

    Cyclones tropicaux

    Technique de Dvorak

    La technique de Dvorak, développé en 1974 par Vernon Dvorak, est une méthode d'évaluation subjective de l'intensité des cyclones tropicaux basée sur l'étude des photos satellitaires des spectres visibles et infrarouges. La technique a été développé en recherchant dans des cyclones tropicaux de même intensité des similitudes entre leur apparence dans les photos visibles et leur température dans celles infra-rouges. La technique tient compte également du changement de ces caractéristiques lors du développement ou de l'affaiblissement des systèmes. La structure et l'organisation des systèmes tropicaux sont comparées dans le temps à chaque 24 heures pour en tirer leurs stades de développement.

    Dans le spectre visible, on classe le stade de développement selon l'apparence des nuages au centre du système et dans les bras en spirales qui l'entourent par rapport à des patrons connus. Dans l'infra-rouge, on recherche la différence de température entre l'œil chaud, s'il existe, et le sommet des orages qui l'entourent pour estimer l'intensité du cyclone (plus la différence est grande, plus le sommet des orages est élevé et plus ils sont intenses).
    Plusieurs centres de prévision des cyclones à travers le monde utilisent cette technique.

    _______________________
    Nom de la page : Techniques diagnostiques de prévision météorologique
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Techniques diagnostiques de prévision météorologique de Wikipédia en français (auteurs)
    Les textes sont disponibles sous
    licence Creative Commons paternité partage à l’identique


    ..........
     
  17. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113


    Front météorologique


    Un front météorologique est une surface de
    discontinuité étendue, qui sépare deux masses d’air ayant des propriétés physiques différentes (ex : température, humidité, pression). Le concept a été développé au début du XX[SUP]e[/SUP] siècle par les météorologues norvégiens pour expliquer le comportement de l'atmosphère dans les latitudes moyennes terrestres : la formation des nuages, des précipitations, des dépressions et des anticyclones ainsi que leur déplacement. Le développement de la météorologie depuis ce temps a permis de démontrer que les fronts sont une conséquence des forces en jeu plutôt que leur cause mais la représentation est maintenant tellement répandue qu'ils sont toujours largement utilisés dans les présentations météo.


    Histoire de l'analyse des fronts

    L'histoire de l'analyse moderne des cartes de surface en météorologie débute au XIX[SUP]e[/SUP] siècle. L'invention du télégraphe en 1845 a permis de diffuser des observations prises à des endroits très éloignés les uns des autres dans un délai raisonnable pour pouvoir les utiliser à fin de prévision. Tant en Amérique qu'en Europe, des réseaux de stations d'observation météorologique se développent.


    Le Smithsonian Institution, sous Joseph Henry, établit le premier réseau de stations d'observations à partir des années 1840. Dès 1849, les premières cartes météorologiques de surface sont tracées en utilisant les 150 stations déjà disponibles. Ce réseau couvrira la majeure partie du centre et de l'est des États-Unis en 1860. Pendant ce temps, le 14 novembre1854, une violente tempête provoque le naufrage de 41 navires français en mer Noire, au cours de la guerre de Crimée. Cette tempête avait traversé toute l'Europe de l'Ouest, mais personne ne fut en mesure de signaler, voire prévenir du danger. Face à ce constat, Urbain Le Verrier, directeur de l'observatoire de Paris, décide de mettre en place un vaste réseau de stations météorologiques couvrant l'ensemble de l'Europe.

    Robert FitzRoy utilise également le télégraphe pour colliger les données météorologiques quotidiennes venant de toute l'Angleterre et tracer ses premières cartes synoptiques. En utilisant la variation de ces cartes dans le temps, il fait les premières prévisions qu'il commencera à publier dans le journal The Times en 1860. Le même mouvement se répand dans tout l'Empire britannique. Ainsi, en 1839, un observatoire météorologique est ouvert à Toronto et différents observatoires sont ouverts à travers les colonies britanniques du Canada par des enthousiastes ou des écoles. En 1871, des crédits de 5 000 $CAN sont alloués au Ministre de la Marine et des Pêches afin de mettre sur pied un réseau de prise de données météorologiques dont le but est de produire des avertissements de tempêtes. En Australie, c'est en 1877 que les premières cartes apparurent dans les journaux. L'Observatoire météorologie de Tokyo, l'ancêtre du service météorologique japonais, fait la même chose à partir de 1883.

    Les cartes de ces pionniers étaient généralement produites une fois par jour à partir des données colligées à une heure fixe le matin. Par exemple, les données américaines étaient prises à 07h30, temps solaire, et télégraphiées au Smithsonian. Seules les données de pression étaient pointées et les lignes d'égale pression, ou isobares, étaient tracées. On identifiait ainsi les dépressions et les anticyclones. Comme les données étaient prises à l'heure solaire, on obtenait une distorsion des patrons de pression. Il fallut attendre l'apparition du concept de fuseau horaire en 1879 et du temps universel coordonné pour remédier à ce problème. Cependant, l'acceptation de ces deux notions prit du temps et ce n'est qu'à la fin du XIX[SUP]e[/SUP] siècle qu’on les retrouve sur la plupart du globe.

    Dès 1841, Elias Loomis est le premier à suggérer la présence de fronts pour expliquer la météo mais ce n'est qu'après la Première Guerre mondiale, en 1919, que l'école norvégienne de météorologie impose ce concept. Ce n'est donc qu'à partir de cette époque que les fronts, séparant les différentes masses d'air recouvrant la planète et auxquels on associe le temps, sont analysés. Encore une fois, cette nouveauté a pris un certain temps à se répandre et ce n'est qu'après la Seconde Guerre mondiale que le National Weather Service américain commença à les indiquer sur ses cartes.

    Les cartes ont été analysées manuellement jusque dans les années 1970 lorsque l'introduction des ordinateurs a permis de développer des programmes de traçages automatiques des données des stations et des isobares. À partir des années 1990, l'ajout des données des satellites, des radars météorologiques aux données de surface et d'altitude et le perfectionnement des programmes informatiques a permis de tracer par ordinateur un premier jet des fronts, mais le plus souvent les météorologistes doivent encore raffiner l'analyse.

    Nomenclature

    Masses d'air et fronts

    Dans le modèle norvégien, il y a cinq masses d'air dans les latitudes moyennes de la planète. Les zones où ces masses d'air se rencontrent portent le nom de front et il y en donc quatre. Ces divisions proviennent de la circulation atmosphérique générale et de la position des divers courants-jets. En général, chacun de ces fronts est identifié à la masse d'air la plus froide, presque toujours située sur sa facette nord :




      • le front arctique 2 : sépare l'air continental arctique (cA) (au-delà de 60 degrés nord et sud) de l'air maritime arctique (mA)
      • lefront arctique : sépare l'air maritime arctique (mA) de l'air continental polaire (cP) (entre 40 et 60 degrés de latitude).
      • le front maritime : sépare l'air continental polaire de l'air (cP) de celui maritime polaire (mP)
      • le front polaire : sépare l'air maritime polaire (mP) de l'air maritime tropical (mT)
    Ces fronts varient en latitude selon la saison. Ainsi le front arctique 2 fait rarement son apparition au sud des îles arctiques avant la fin de l'automne dans l'hémisphère nord alors que le Soleil illumine de moins en moins les régions nordiques et que l'air se refroidit graduellement. Les différences entre masses d'air maritime et continental de même nom est essentiellement due au contenu en humidité alors que les températures y sont assez similaires.

    D'autres fronts plus locaux ont également des noms :



    Type de fronts

    À cause de la circulation de l'air le long de ces fronts, on distingue différents types de fronts :




      • le front chaud est la zone où l'air de la masse d'air la plus chaude est déplacée vers celle plus froide par les vents
      • le front froid est l'endroit où la masse d'air froid se déplace vers celle plus chaude
      • un front stationnaire est la limite entre de vastes masses d'air chaud et froid qui sont en contact entre elles sans produire de mouvements relatifs d'une grande portée car les vents dans chacune des masses d'air sont parallèles au front (par exemple les fronts océaniques)
      • un front occlus se développe lorsqu'un système météorologique s'intensifie et que son front froid accélère de sorte qu'il rattrape le front chaud. Lorsque le front froid atteint le front chaud, l'air chaud devient de plus en plus pincé ou coincé entre les deux fronts en altitude
      • un trowal est le creux d'air chaud en altitude créé par le front occlus. Il se retrouve légèrement à l'arrière de celui-ci. En effet, la position du front occlus est celle qu'aurait le front froid coincé sous l'air chaud. Ce concept est utilisé dans certains pays comme le Canada et la Grande-Bretagne.
    On retrouve également certaines lignes de démarcations de méso-échelle avec lesquelles on associe du temps et qui servent de limites entre masses d'air très locales :


    Dynamique des fronts

    La théorie classiques des fronts, de l'École de météorologie de Bergen, dit que lorsque deux masses d'air ayant différentes caractéristiques physiques entrent en contact, l'air froid, plus dense, tend à glisser sous l'air chaud qui s'élève en s'étendant (ascendance). Une fois l'air chaud refroidi dans les couches supérieures de la troposphère, l'humidité qu'il contient se condense en donnant naissance à des nuages caractéristiques (cirrostratus, altostratus, nimbostratus), qui donnent des précipitations (pluie, neige, grésil, bruine, etc.).


    Dans les dépressions importantes, le front froid s'engouffre violemment sous le front chaud en produisant un fort courant d'ascendance qui donne naissance à des nuagesconvectifs: cumulus, cumulus bourgeonnants et cumulonimbus). Ces derniers produisent des averses ou même des orages qui peuvent contenir de la grêle, produire des rafales descendantes violentes et des tornades.

    Dans les deux cas, se rétablit plus ou moins lentement un équilibre entre les deux masses d'air (front occlus), et le phénomène de glissement prend fin. Le passage des fronts froids ou chauds sur une région cause l'abaissement ou l'élévation de la température atmosphérique locale.

    En fait, les fronts ne sont que le résultat des mouvements de l'atmosphère et non leur cause. Les événements décrits ci-dessus sont le résultat des mouvements verticaux de l'atmosphère, un fluide en rotation, que l'on peut expliquer par la thermodynamique et la mécanique des fluides. Les zones de contrastes que marque la présence de fronts causent ces mouvements et non les fronts eux-mêmes. L'air plus doux ne se soulève pas parce qu'il est repoussé vers le haut par l'air frais de surface mais bien parce la convergence des vents dans la colonne d'air le long des fronts génère un mouvement ascendant.


    ___________________________________

    Nom de la page : Front (météorologie)
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Front (météorologie) de Wikipédia en français (auteurs)

    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique
     
    Dernière édition: 19 Janvier 2016
  18. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113

    Front chaud



    Un front chaud est une limite entre deux masses d'air, de façon telle que l'air chaud étant situé à l'arrière de la limite remplace l'air froid. Contrairement au front froid, le passage entre les deux masses d'air s'effectue sur une longue distance et il est parfois difficile de noter avec précision le moment de son passage.


    [​IMG]
    Description : Diagramme d'un front chaud sans texte pour le rendre universel
    Date : 2011-03-06 21:15 (UTC)
    Source : Warmfrontai.svg
    Auteur : Warmfrontai.svg: Mouagip
    Derivative work: Pierre cb (d)
    Autorisation : En tant que détenteur du droit d’auteur,
    je publie cette œuvre sous la licence suivante :
    Cette image est dans le domaine public
    car son contenu provient du National Oceanic and Atmospheric Administration,
    réalisée par un employé dans le cadre de ses activités professionnelles.
    _________________________

    Description

    La limite entre les deux masses d'air (air chaud et air froid), appelée surface frontale, est une zone souvent météorologiquement active à laquelle sont associés nuages et précipitations. Le soulèvement de l'air chaud au-dessus de l'air froid antérieur n'est pas dû à la différence de densité des masses d'air en présence, mais à des forçages issus des basses couches (convergence ou cisaillement du vent par exemple), et/ou des interactions avec des éléments de haute altitude, voisins de la tropopause.

    Temps associé


    Les changements reliés au front chaud sont habituellement moins brusques que ceux associés au front froid. Il se caractérise par l'étendue de son système de nuages et de précipitations, soit de plusieurs milliers de kilomètres carrés. L'approche d'un tel front est marquée par un envahissement de nuages élevés du type cirrus dont l’épaisseur augmente graduellement et se transforment en altostratus.
    Par la suite le nuage devient du type nimbostratus et donne des précipitations continues. Il est plus rare que des nuages de type cumulonimbus (ou altocumulonimbus) engendrés par forçage se retrouvent le long de ce type de front. Toutefois, lorsqu'un front froid se bloque et finalement recule vers le nord, celui-ci se transforme en front chaud. Il est alors à l'origine de précipitations abondantes ayant souvent un caractère orageux. Ce phénomène est relativement courant au sud des États-Unis.


    En hiver, alors que la température est sous le point de congélation, il y a souvent une succession de neige, de pluie verglaçante ou de grésil et de pluie; alors qu'en été ce sera seulement de la pluie. Dans tous les cas, la visibilité diminuera fortement, de la brume ou du brouillard pourra accompagner les précipitations et les accumulations pourront être importantes. Le mélange de précipitations en altitude ou au sol donne des conditions de givrage importantes.

    Les vents tourneront de façon antihoraire lors du passage du front chaud (ex. du sud-est à sud-ouest) dans l'hémisphère nord et inversement dans celui du sud. La température et le point de rosée subiront également une hausse mais celle-ci peut être graduelle avant que le ciel éventuellement se dégage dans le secteur chaud.



    _______________________________
     
  19. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113




    Front froid


    Un front froid est une limite entre deux masses d'air, l'air froid étant situé à l'arrière de la limite dans le sens du déplacement. Ce front marque sur la surface terrestre un zone de variation spatiale rapide, presque discontinue, de la direction du vent et du tracé des lignes isobares et isothermes. Sur les cartes météorologiques, les fronts froids sont représentés par une ligne ornée de triangles pointant dans le sens de l'avancée du front.


    [​IMG]
    Description : Front froid.
    Dessiné par Jérôme BLUM le 25 août 2006.
    D'après l'image Image:Coldfront.jpg.

    Utilisateur : Wagner51
    Ce fichier est disponible selon les termes de la licence
    _________________________

    Mécanisme


    Selon le modèle traditionnel de l'école norvégienne de météorologie, l'air froid n'est pas un mur vertical parfaitement droit. Lorsque l'air froid pousse à l'horizontale sur l'air chaud, celui-ci est automatiquement soulevé ce qui crée en surface un effet de grattoir qui amène l'air chaud au-dessus de l'air froid. L'air froid se déplaçant en surface sous l'air chaud, la limite entre les deux masses d'air, appelée surface frontale, adopte une pente dont l'angle dépend de la vigueur de l'injection froide et de son épaisseur.

    En fait, le soulèvement de l'air chaud au-dessus de l'air froid est plus complexe et n'est pas dû à la différence de densité des masses d'air. Il est plutôt dû à des forçages issus des basses couches (convergence ou cisaillement du vent par exemple) ainsi que des interactions avec des éléments de haute altitude dont le courant-jet.


    Temps associé


    La limite de forme le front froid est une zone souvent météorologiquement active à laquelle sont associés nuages et précipitations. Il existe deux types de front froid : catabatique et anabatique.

    Le premier type est associé à une invasion d'air froid en surface alors qu'en altitude l'air est relativement sec et en subsidence, ce qui le réchauffe et dégage le ciel. Le temps associé avec les fronts froids catabatiques se limite le plus souvent le long du front. On y retrouve des nuages convectifs qui produisent des averses ou des orages. Ce genre de front est commun dans les régions continentales.

    Les fronts froids anabatiques sont ceux où l'air chaud en altitude est en ascension et saturé. Dans ce genre de front, les précipitations convectives s'étendent loin derrière le front. En général, le mouvement vertical et les taux de précipitation y sont moindres mais sur une plus grande surface. Ce type est plus courant dans les régions maritimes.
    Dans les deux cas, après le passage d'un front froid, l'air demeure instable sur une certaine distance. Ceci donne un ciel de traîne comportant des rues de cumulus.



    ______________________


     
  20. titegazelle

    titegazelle سُبحَانَ اللّهِ وَ بِحَمْدِهِ Membre du personnel

    J'aime reçus:
    4181
    Points:
    113



    Front occlus et trowal


    Un front occlus et un trowal (trough of warm air aloft ou creux d'air chaud en altitude) se forment lorsqu'un système météorologique s'intensifie et que son front froid accélère de sorte qu'il rattrape le front chaud. Lorsque le front froid atteint le front chaud, l'air chaud devient de plus en plus pincé ou coincé entre les deux fronts. Il sera soulevé en altitude et le système devient occlus.

    Occlusion

    Une dépression des latitudes moyennes passe par différentes étapes au cours de sa vie : précurseur, cyclonisation, maturité, occlusion et dissipation. Le centre de rotation se forme quand le long d'une bande continue qui sépare une masse d'air froid et une plus chaude, les vents poussent l'air chaud vers l'air froid d'un côté et vice versa de l'autre pour obtenir une rotation autour d'un centre. À mesure que la pression baisse dans la dépression, les fronts chauds et froids caractéristiques se forment.

    Les vents dans l'air froid ont tendance à être plus forts que dans l'air chaud et l'air y est plus dense. Lorsque le front chaud se déplace toujours, mais qu'un ralentissement commence à se faire sentir. Le front froid le rejoint et il commence à repousser l'air doux en altitude près de la dépression. Une partie de cet air est alors forcée de s'élever, créant le trowal en altitude et le front occlus en surface. À ce stade, l'air chaud est presque complètement coupé de la surface dans la dépression. La frontolyse, ou dissipation des fronts, laisse une circulation cyclonique dans l'air froid sous le creux d'air chaud. Il s'ensuit, au centre, une remontée de la pression et un affaiblissement tel, que le système deviendra stationnaire dans bien des cas.

    - Trowal
    Il s'agit du creux d'air chaud en altitude qui se forme quand il n'y a plus que de l'air froid en surface. L'emplacement du trowal est celui de la base du coin d'air doux en altitude tel que vu sur les images à ci-dessous. Au Canada et dans certains autres pays, l'occlusion est identifiée par le symbole du trowal, plus associé avec la limite nuageuse et pluvieuse arrière du système.

    - Front occlus
    Dans l'air froid sous-jacent au trowal, il peut se former un front de faible amplitude s'étendant de sa base à la surface. On l'appelle le front occlus. Ce front est une étroite zone de transition située entre les deux masses d'air froid qui ont créé l'occlusion.

    Il peut y avoir deux types de fronts occlus:

    • Si la partie frontale de l'air froid est plus froide que la partie en recul, et qu'elle soulève le front chaud, on a une occlusion à caractère de front froid. La base du creux d'air chaud en altitude est derrière l'occlusion en surface.

    • Lorsque la situation est inverse et que le front froid monte le long de la surface frontale chaude, on a évidemment une occlusion à caractère de front chaud. La base précède le front de surface.
    Dans les pays qui utilisent les termes front supérieur ou en altitude, plutôt que trowal, on précise que le front occlus est froid ou chaud. Les deux images à droite montrent des coupes à travers un front occlus (ligne A vers B). On indique la position du front occlus par celle de l'air le plus froid en surface.

    Les deux types de fronts occlus et le TROWAL
    [​IMG]
    Description : Front occlus lorsque le front froid rattrape le front chaud.
    Il y a deux types montrés sur les coupes (AB):
    soit le front froid passe sous l'air doux à l'avant du front chaud, soit il passe au-dessus.
    Date : 9 octobre 2006
    Source : Made from cut and paste Image:Warmfrontokklusion_en.png
    and
    Image:Kaltfrontokklusion_en.png

    Auteur : Pierre_cb
    Autorisation : Free
    Moi, propriétaire du copyright de cette œuvre, la place dans le domaine public.
    Ceci s'applique dans le monde entier.
    Dans certains pays, ceci peut ne pas être possible ; dans ce cas :
    J'accorde à toute personne le droit d'utiliser cette œuvre

    dans n'importe quel but, sans aucune condition,
    sauf celles requises par la loi.
    ____________________________


    Temps associé


    En général, la précipitation est à l'avant du trowal et non du front occlus. En effet, le mouvement vertical en ascendance se retrouve dans le creux d'air doux en altitude et non avec les limites entre l'air frais et froid. On retrouve tous les types de précipitations avec les fronts occlus ou trowal, autant convectifs que stratiformes, mais en général à des intensités moindres. En effet, comme le mouvement vertical y est en diminution, la formation de précipitation est plus faible. Quand on s'approche de la dissipation de la dépression, la bruine y devient prédominante.


    ______________________________
    Nom de la page : Front occlus et trowal
    Contenu soumis à la licence CC-BY-SA 3.0.
    Source : Article Front occlus et trowal de Wikipédia en français (auteurs)
    Les textes sont disponibles sous licence Creative Commons paternité partage à l’identique

     

Partager cette page